User Interface Grammars

Andreas Zeller £ “ICIS PA

nnn

User Interface Grammars

Andreas Zeller, CISPA Helmholtz Center for
Information Security

Joint work with Nataniel P. Borges Jr., Manuel
Benz, and Eric Bodden

Abstract. To systematically explore user
interfaces, one must cover graphical
interaction features (e.g. clicks, swipes) as well
as textual interaction features (e.g. form input).
We introduce user interface grammars as a
single formalism that captures and integrates
graphical and textual input languages. A Ul
grammar encodes graphical interactions and
text input as a single (possibly nontrivial)
stream of input events, allowing for their
uniform treatment in test generation and/or
coverage measurement. Grammars can be
mined from existing systems (GUI-based or
text-based), allow for simple customization by
testers (say, for special inputs such as
passwords or injection attacks) as well as
guidance towards Ul (model) coverage and
code coverage. Includes live demos!

https://andreas-zeller.info/

A Call for Modularity

* Every testing tool reinvents its Testing and Exploration Strategies
own model and analysis

* Makes it hard to assess,

Parsers and Producers
compare, and reuse approaches

« Call for solid formal foundations
and modular algorithms Interaction Models

Draw on established fields such as

formal languages
User Interfaces

Generating Inputs

“If you talk to a man in his language, that goes to his heart.” — Nelson Mandela

Fuzzing

8.2 - 27 - -9 / +((+9 * --2 + —-4-4-((-1 *
+(8 -5 -6)) * (-((-+(((+(4))))) - ++4) /
(2+--((5.6 - -=(3 -1.8 +(6 = +-(((-(-6)
* ===+6)) / +-=(+-+-7 * (-0 * (+(((((2)) + 8
-3 - +49.0 + ---(--+7 / (1 / +++6.37) + (1)
/ 482) / +++-+0)))) * -+5 + 7.513)))) -

(+1 / ++((-84)))))))) * ++5 / +-(--2 - -+
+-9.0)))) / 5 * --++090

Interpreter

Fuzzing means to throw random
inputs at a program to see if it
crashes.

Dumb Fuzzing

(144 60)5(5-(05%/(* %)910)25/509505)3)/
09211762 /(7%+22)76-+/29+/4*%2+

8()04/844)

4)632/3/7 *0525+)7x

Interpreter

But if you just take sequences of
random characters and throw them at
an interpreter, all you're going to get is
syntax errors. (It's okay to test syntax
error handling, but this should not be
all.)

In order to get syntactically valid

Grammars inputs, you need a specification. A
grammar specifies the set of inputs
Gtart) ti= (expr) as a language.
(expry —=—tterm) + (expr) | (term) - (expr) |({(term)
(term) ::= (term) * (factor) | (term) / (factory~}—Ffactor)
(factor) ::= + (factor) | - (factor) | ((expr)) | (int) | (int) . (int)
(int) ::= (digit) (int) | (digit)
(digit) =0 112131415161 718I1I9
You may have seen grammars as
Grammars as Producers parsers, but they can also be used as
(start) ::= (expr)
A O A A AU L producers of inputs.
(factor) ::= + (factor) | - (factor) | ((expr)) | (int) | (int) . (int)
(int) :i= (digit) (int) | (digit)

(digit) =0l 112131415161 71819

Grammars as Producers

(start) ::= {expr)

(start)

You start with a start symbol

Grammars as Producers

(start) ::= (expr)

(start)

Grammars as Producers

(expr) ii= (term) - (expr)

(expr)

which then subsequently gets
replaced according to the production
rules in the grammar.

Grammars as Producers

(expr) si= (term) - (expr)

(term) - (expr)

If there are multiple alternatives, you
randomly choose one.

Grammars as Producers

(term) ti= (factor)

(term) - (expr)

Grammars as Producers

(term) ii= (factor)

(factor) - (expr)

Grammars as Producers

(factor) ::= (int) . (int)

(int) . (int) - (expr)

Grammars as Producers

(int) 1= (digit)

(digit) . {int) - (expr)

Grammars as Producers

(int) 1= (digit)

(digit) . (digit) - (expr)

Grammars as Producers

(digit) ::= 8

8. (digit) - {(expr)

Over time, this gives you a
syntactically valid input. In our case, a
valid arithmetic expression.

Grammars as Producers

(digit) ::= 2

8.2 - (expr)

Actually, a pretty complex arithmetic
Grammars as Producers

expression.
(start) ::= (expr)
(expr) := (term) + (expr) | (term) - (expr) | (term)
(term) ::= (term) = (factor) | (term) / (factor) | (factor)
(factor) ::= + (factor) | - (factor) | ((expr)) | (int) | (int) . (int)
(int) :i= (digit) (int) | (digit)
(digit) c:=0 1112131415161 71819

8.2 - 27 - -9 / +((+9 * --2 + -—-+-+-((-1 *
+(8 -5 -6)) * (-((-+(((+(4))))) - ++4) / +
(-+---((5.6 - -=(3 * -1.8 * +(6 * +-(((-(-6)
* ===+6)) / +--(4-+-7 % (-0 * (+(((((2)) + 8
-3 - +49.0 + ---(--+7 / (1 / +++6.37) + (1)
/ 482) / +++-+0)))) * -+5 + 7.513)))) -

(+1 / ++((-84)))))))) * ++5 / +-(--2 - -+
+-9.0)))) / 5 % --++090

Fuzzing with Grammars

8.2 - 27 - -9 / +((+9 * --2 + —-4-4-((-1 *

+(8 -5 -6)) * (-((-+(((+(4))))) - ++4) /

(-+--- ((5.6 - --(3 * -1.8 » +(6 * +-(((-(-6)

2 oo8)) [/ eem(soee7 % (<0« (+(((((2)) + 8
-3 - +49.0 + -==(=-+7 / (1 / +++6.37) + (1) °

/ 482) / +++-+0)))) * -+5 + 7.513)))) -

(+1 / ++((-84)))))))) * ++5 / +-(--2 - -+

+-9.0)))) / 5 --++090

These can now be used as input to
your program.

Fuzzing with Grammars

Fuzzing with Grammars

JavaScript Grammar *

A couple of years ago, we used a
JavaScript grammar to fuzz the
interpreters of Firefox, Chrome and
Edge.

My student Christian Holler found
more than 2,600 bugs, and in the first
four weeks, he netted more than
$50,000 in bug bounties. If you use a
browser to read this, one of the
reasons your browser works as it
should is because of grammar-based
fuzzing.

Mining Grammars

“The more languages you know, the more you are human.” - Tomas Garrigue Masaryk

Fuzzing with Grammars

So where did you get this grammar
from?

Mining Grammars

(start) ::= (expr)

(expr) ::= (term) + (expr) | (term) - (expr) | (term)

(term) ::= (term) = (factor) | (term) / (factor) | (factor)
(factor) ::= + (factor) | - (factor) | ((expr)) | (int) | (int) . (int)
(int) c:= (digit) (int) | (digit)

(digit) =0l 112131415161 71819

void parse_expr() {
parse_term();

if (lookahead() == '+') { consume(); parse_expr(); }
if (lookahead() == '-') { consume(); parse_expr(); }
}
void parse_term() { ... }
void parse_factor() { ... }
void parse_int() { ... }
void parse_digit() { ... }

So let me tell you a bit about how to
mind such grammars. The idea is to
take a program that parses such
inputs and extract the input grammar
from it.

Rules and Locations

(expr) ::= (term) + (expr) | (term) - (expr) | (term)

void parse_expr() {
parse_term();
if (lookahead() == '+') { consume(); parse_expr(); }
if (lookahead() == '-') { consume(); parse_expr(); }

}

The interesting thing is that there is a
correspondence between individual
rules in the input grammar and
locations in the parsing code.

Consumption

The character is /ast accessed

(consumed) in ¢/is method

void parse_expr() {
parse_term();
if (lookahead() == { consume(); parse_expr(); }
if (lookahead() ==

=) { consume(); parse_expr(); }

Rahul Gopinth, B th,anct Anroas ot Mining Inpot Grammarsfrom Dynamic Control low, ESECIFSE 2020

The concept of consumption
establishes this correspondence. A
character is consumed in a method
m if m is the last to access it.

Consumption

For each input character, we dynamically track where it is consumed

1+ (8 -5)
During program execution we can
Consumption track where characters are consumed
o) e factor) using dynamic tainting.

/]_ * (/8 - 5)

parse_digit() parse_digit() parse_expr() parse_digit()

parse_term()

Consumption

parse_factor()

parse_expr()

parse_digit() parse_digit() parse_digit()
/ \

1 0« (8 - 5)

rrrrrrrrr

This gives us a tree like structure.

parse_term()

Parse Tree

parse_factor()

parse_expr()

parse_digit() parse_digit()
/

Rahul Gopinth, B th,anct Anroas ot Mining Inpot Grammarsfrom Dynamic Control low, ESECIFSE 2020

parse_digit()
\

5)

Which we can augment with caller-
callee relations.

parse_term()

Parse Tree

parse_factor()

parse_expr()

parse_expr()
parse_term() parse,te’rm() parse,t\e
parse_factor() parse_factor() parse_fa
parseiin/t() parsejint()

s
parse_digit()
/

1 = (8 -

parse_int()

/
parse_digit() parse_digit()
\

rm()
ctor()
\

5)

Even for those functions which do not
consume anything.

(term)

Parse Tree

(factor)

(expr)

If we take the function names and
only use the nouns, we can use those
nouns as non-terminal symbols.

{expr)
(term) (term) (term)
7 7 v
(factor) (factor) (facu\)r>
(int) (int) (int)
/ s \
(digit) (digit) (digit)
/ / \
1« (8 - 5)
(term) From these parse trees, we can now

Mining a Grammar

(factor)

(expr)

(expr)
(term) (term) (term)
s 7 .
(factor) (factor) (fact&\)r)
(int) (int) (int)
7/ s \
(digit) (digit) (digit)
/ \

1 = (8 -

rrrrrrrrr

5)

mine a grammar.

A term obviously can consist of

(term)
Mining a Grammar (Feccon another term, a multiplication symbol,
and a factor.
(term)
*
So we add this as a rule to our
Mining a Grammar grammar.
(term) ::= ‘<term) * (factor)
(term) (term) (tefm)
(facto/r) (fact/or) (factor)
And likewise for other symbols.
Mining a Grammar (factor)
(term) ::= (term) +* (factor)
| (factor)
= {expr)

Mining a Grammar

(term) ::= (term) =« (factor)
| (factor)
(factor) ::= ((expr))
|
(factor) (factor) (factgr)

(int; (int) (int)

rrrrrrrrr

Mining a Grammar

(start) 1= (expr)

(expr) := (term) - (expr) | (term)
(term) (term) =* (factor) | (factor)
(factor) ::= ((expr)) | (int)

(int) = (digit)

(digit) =11518

zzzzz

From this single input, we already get
the basics of a grammar.

Completing the Grammar

(start) 1= (expr)

(expr) ::= (term) - (expr) | (term)
(term) (term) =+ (factor) | (factor)
(factor) ::= ((expr)) | (int)

(int) = (digit)

(digit) =115 8

4

Parse tree

4

0+ 2

And if we add more inputs, ...

Completing the Grammar

(start) ::= (expr)

(expr) ii= (term) + ({expr) | (term) - (expr) | (term)
(term) 1= (term) = (factor) | (factor)

(factor) ::= ((expr)) | (int)

(int) c:= (digit)

(digit) =el1l21518

4

Parse tree

4

0+ 2

... the grammar reflects the structure
of these additional inputs.

Completing the Grammar

(start) = (expr)

(expr) = (term) + (expr) | (term) - (expr) | (term)
(term) = (term) * (factor) | (factor)

(factor) ::= ((expr)) | (int)

(int) = (digit)

(digit) =0l1l21518

4

Parse tree

rrrrrrrrr

Completing the Grammar

(start) 1= (expr)
(expr) := (term) + (expr) | (term) - (expr) | (term)
(term) 1= (term) = (factor) | (term) / (factor) | (factor)
(factor) = + (factor) | - (factor) | ((expr)) | (int) | {int) . (int)
(int) - (digit) (int) | (digit)
(digit) =0l 112131415161 718109

Parse tree

0+ 2
+3 / -46.79

We now have successfully mined our
example grammar.

Mimid: A Grammar Miner

Our Mimid grammar miner takes a
program and its inputs and extracts a
grammar out of it. This grammar can

I (, (json_raw))+ (, (json_raw))*]
(json_dict’) ::=}

| (" (json_string’) : (json_raw) ,)*

| " (json_string’) : (json_raw) }

(json_string’) (json_string)* "

(json_number)

(json_number)+ | (json_number)+e (json_number)+

Fuzzers
directly be used by fuzzers, parsers,
Input grammar Humans and humans
Inputs
Parsers
The extracted grammars are well
(start) ::= (json_raw)
(Json_raw) +:= * (json_string’) | [Gson_list") | { Gson_dict?) structured and human readable as
| (json_number’) | true | false | null
Goon_string) c:= (space) | 1 L& 1§ 1% 151" you can see in this grammar extracted
LT T et/ 1\ dedote. escape) from a JSON parser.
{decode_escape) "1/ 1l flnlrlt
(json_list’) :: Humans
| (json_raw) (, (json_raw))*]

(json_number) ::= +« | - | . | /[0-91/ | E | e
Humans can edit these grammars.
(start) ::= (json_raw)
(json_raw) ::= " (json_string’) | [(json_list’) | { (json_dict”)
| (json_number’) | true | false | null
(json_string) ::= (space) | ' | # | $ 1% 16| "
[I P O I R I
l<li=0)y l2laltlIr~r_1,1"1
{111}~ 1 /[A-Za-20-91/ | \ (decode_escape)

(decode_escape) ::= " | /I bl flnlrlt

(json_list’) ::=]

| (Gson_raw) (, (json_raw))*]

| (, (json_raw))+ (, {(json_raw))*]
(json_dict’) ::= }

| (" (json_string’) : (json_raw) ,)*
| " (json_string’) : (json_raw) }
(json_string’) ::= (json_string)*"
(json_number ")
(json_number) :

+ -1 .1 /[6-91/ | E | e

Humans

(json_number)+ | (json_number)+e (json_number)*

For instance, by assigning
zj::ja:w:)::<:J=So"n;jz::,stmng’> | 10% [(json_list’) | 50% { (json_dict’) prObabiIitieS tO indiVidual prOdUCtionS.

| (json_number”) | true | false | null

(json_string) ::= (space) | ' | # | $ 1% 161"
I R T I O A I

l<t=1) lz2lallCr1r~1_1,1"1
14111} ~1 /[A-Za-z0-91/ | \ (decode_escape)
(decode_escape)

"I /1lblflnlrlt

Fuzzer * (json_list’) ::

| (json_raw) (, (json_raw))*]
I (, (3son_raw))+ (, (json_raw))]

* Humans

(json_dict’) ::= }
| (" (json_string’) : (json_raw) ,)*
| " (json_string’) : (json_raw) }

(json_string’) (json_string)* "

(json_number”)
(json_number) :

(json_number)+ | (json_number)+ e {(json_number)+

+ -1 .1 /[0-9]/ 1 Ele

Or by inserting magic strings that
o v 5+ momstetog’) 1 [Goon 1ot | { Goon dict program analysis would have a hard

| (json_number”) | true | false | null

(json_string) ::= (space) | ' | # | $ 1% & |" time finding Out_
[e I R A R

l<l=1) 1z20lallr10r~1_1,1"1

{111 3}1~1/[AZa-z6-9]1/ | \ (decode_escape)

(decode_escape) ::= " | /I bl flnlrlt

Fuzzer * (json_list’) ::=] * Humans

| {json_raw) (, (json_raw))*]
I (, (Gson_raw))+ (, (json_raw))+]
(json_dict’) ::= }

I (" (json_string’) : (json_raw) ,)*
| " (json_string’) : (json_raw) }
(json_string’) ::= (json_string)*" | '; DROP TABLE students"
(json_number ")
{json_number) :

{json_number)+ | (json_number)+ e (json_number)*

+ -1 .1 /[e-91/ | E | e

This change to the grammar injects

; DROP TABLE STUDENTS" , "/h?0 ": [1, "": "" , "x": false ,
L.+, onop TaeLE stupeNTs®, ;47 1 SQL statements everywhere. Do not
}, "": false, "X": "N7‘:", "t [true], " [], " ‘
I S do this at home, folks — thank you.
: s { " true t": 90, "g": ["'; DROP TABLE
1, "": [false], "= [1, "":"'; DROP TABLE STUDENTS",
B ", "E": null, : [70.3076998940e6 1, "Ju": true } }
: true, @ "%7y", "!": false, "": true, "": { "": P
-896860E+0, "U": OE-5
Fuzzer * { 1?} [true, "'; DROP TABLE STUDENTS", null, [false, { } 1,
Er?;mes ull, "": true, "7": 208.00E4, "": true, "":

70e+10, [false, false]}

{me DROP TABLE STUDENTS" }

PAFERIE TN "', DROP TABLE STUDENTS" }

-64.0e-06, "": [{ "p[f": false, "": "'; DROP TABLE STUDENTS",
1, "": true, "8D": -0, "AR": true }] }

"'; DROP TABLE STUDENTS" }

'; DROP TABLE STUDENTS", "zJzjT": 6.59 }

false }

: [false, 304e+008520, null, false, "°
“m[MD" , [false 11}

; DROP TABLE STUDENTS",

Mining Grammars

“The more languages you know, the more you are human.” - Tomas Garrigue Masaryk

Filling Forms

“Estimated time for filling out this form is three hours, 12 minutes” — US tax form

Now, let’s move over to user
interfaces.

A Form

. Select frorr mentt
Fuzzingbook Swag Order Form

Yes! Please send me at your earliest convenience 4
Name: Andreas Zeller Email; zeller@acm.org —~——

City: Saarbriicken ZIP Code: 66111 Type into field
- 7‘(7)/@
@ have read the terms and conditions.

Place order Suwbmit

Here is a graphical user interface with
various Ul elements.

(Interaction) ::= Fuzzingbook Swag Order Form
£il11("Name", "Andreas Zeller") Yes! Please send me at your earliest convenience | One FuzzingBook T-Shirt
)
fill("Email", "zeller@acm.org")| Name: Andreas Zeller Email: zeller@acm.org
fill("city", "Saarbriicken") city: Saarbricken 2P Code: 66111
filu("zip", "66111")
" " @ | have read the terms and conditions.
set("T+C", True) Place order
submit("Place order")

We can express the interaction with
the GUI through a series of
commands expressing the
interactions.

Interactions as Grammars

(Interaction) ::= Fuzzingbook Swag Order Form
Fi11("Name", (Name)) Yes! Please send me at your earliest convenience | One FuzzingBook T-Shirt
)

fill("Email", (Email)) Name: David Lo Email: zeller@acm.org
fill(city", (City)) * City: -racon 2P Code: 62919
fill("zip", (zip))
set("T+C", (Boolean))
submit("Place order")

I have read the terms and conditions.

Place order

(Name) ::= "Andreas Zeller" | "David Lo"
(Email) ::= "

(City)

(Zip) ::= "66111" | "62919"

(Boolean) ::= True | False

This neatly integrates with a concept
of grammars as you can also express
alternatives...

Interactions as Grammars

(Interaction) ::= Fuzzingbook Swag Order Form
FA11("Name”, (Name)) Yes! Please send me at your earliest convenience | Ons Fuzzingook T-shit
,
fill("Email", (Email)) Name: zJzjT Email: frp@yh5 (be0)
fill("city", (City)) » City: 19-1250 2P Code: 765

fill("zip", (zip))
set("T+C", (Boolean))
submit("Place order")

I have read the terms and conditions.

Place order

(Name) ::= "Andreas Zeller" | "David Lo" | " (first-name) (last-name) " | " (char)*"
(Email) "zeller@acm.org" | " (e-mail)"

(City) "Saarbriicken" | Ma-2axbn"

(zip) ::= "66111" | "12345" | " (digit)*"

(Boolean) ::= True | False

... as well as generic grammar rules
for individual elements ...

Interactions as Grammars

(Interaction) ::= Fuzzingbook Swag Order Form
fill ("Name" (N a me)) Yes! Please send me at your earliest convenience | One FuzzingBook T-Shirt
)
fill("Email", (Email)) Name: 2JzjT Email: '; DROP TABLE STUDENTS
Fill("city", (City)) » City: -12850 2P Code: -42

fill("zip", (zip))
set("T+C", (Boolean))
submit("Place order")

@ | have read the terms and conditions.
Place order

(Name) ::= "Andreas Zeller" | "David Lo" | " (first-name) (last-name) " | " (char)*"
(Email) "zeller@acm.org" | " (e-mail)" | "'; DROP TABLE STUDENTS"

(City) ::= "Saarbriicken" | ™a-21ax5n"

(zip) :: 66111" | "12345" | " (digit)+" | "- (digit)+"

(Boolean) ::= True | False

... and also invalid(!) values.

Interactions as Grammars

(Interaction) ::=
Fill("Name", (Name)) * Full control over text entered
fill("Email”, (Email))
FILL("City", (City))
filu("zip", (zip))
set("T+C", (Boolean))
submit("Place order")

« All features of text-based fuzzing
(= coverage guidance, weights, generators, ...)

« Combine with inputs from other sources

(Name) ::= "Andreas Zeller" | "David Lo" | " (first-name) (last-name) " | " (char)*"
(Email) "zeller@acm.org" | " (e-mail)" | "'; DROP TABLE STUDENTS"

(City) "Saarbriicken" | Ma-2axbn"

(zip) ::= "66111" | "12345" | " (digit)+" | "- (digit)+"

(Boolean) ::= True | False

Mining User Interface Grammars

(Interaction) ::= Fuzzingbook Swag Order Form
Fi11("Name", (Name)) Yes! Please send me at your earliest convenience | One FuzzingBook T-Shirt
)
fill("Email", (Email)) Name: Email
Fill("city", (City)) » ciy 2P Code:

fill("zip", (zip))
set("T+C", (Boolean))
submit("Place order")

I have read the terms and conditions.

Place order

For each Ul element, determine the set of valid inputs

The more accessible the form, the more precise the grammar

Such grammars can be easily mined -
say, by analyzing the HTML tags.

Demo

Generating Inputs

“If you talk to a man in his language, that goes to his heart.” — Nelson Mandela

User Interfaces

“No matter how cool your interface is, it would be better if there were less of it.”— Alan Cooper

Now from forms to sequences of
windows.

A Form

Fuzzingbook Swag Order Form

Yes! Please send me at your earliest convenience | One FuzzingBook T-Shirt 2
Name: Email:
City: ZIP Code:

I I have read the terms and conditions.

Place order

Here again, we see a form. But this is
just part of a larger set of screens that
are all interconnected.

A User Interface

Fuzzingbook Swag Order Form

Yes! Please send me at your earliest convenience | One FuzzingBook T-Shirt

Name: Email

city: 2ZIP Code:

K 1 have read the terms and conditions. v
Place order

Fuzzi Terms and Conditi l

" | Thank you for your Fuzzingbook Order!
We will send One FuzzingBook Rotary Hammer to Jane Doe in Seattle, 98104
wilbe sent

Want more swag? Use our order form!

If for instance, you click on terms and
conditions, you get a window that
explains these terms and conditions.
If you place your order, you get a
confirmation window.

A User Interface Model

Fuzzingbook Swag Order Form

(Order Form)

fill(.)
lick("T d Conditi " !
click(*Terms an onditions") click("Order Form") submit("Place Order")

(click("Order Form") /
(Terms and Conditions) @
soios

Fuzzingbook Terms and Conditions

Classically, these different windows
are represented as states, and
interactions to change between
windows become transitions.

A User Interface Model

v

(Order Form) — @

y L

vectify

Zo be generated?

click(*Terms and Conditions™) click("Order Form") submit("Place Order")

click("Order Form")

(Terms and Conditions)

¥

The resulting finite state model,
however, does not state the rules for
textual input.

A User Interface Grammar

click("order Forn") LU

submit("Place Order")

click("Terms and Conditions")

click("Order Form")

X ~ /
{Terms and Conditions)

However, we can integrate both by
embedding the finite state model into
a grammatr.

A User Interface Grammar

>

click("Terms and Conditions") lick("order Formr) LU

click("Order Form") submit("Place Order")

(start) ::=

Every state in the final state model
then becomes a non-terminal in the
grammar

A User Interface Grammar

click("Terms and Conditions") click("Order Form") Fil1(..)

click("Order Form") submit("Place Order")

(Terms and Conditions)

(Start) ::= (Order Form)

A User Interface Grammar

>
>

click("Terms and Conditions") lick(“order Forn®) FILLG)

click("order Form") submit("Place Order")

(start) ::= (Order Form)

(Order Form) ::=

A User Interface Grammar

>
O

click("order Forn") L)
click("Order Form") submit("Place Order")
(Start) ::= (Order Form)

(Order Form) ::= click("Terms and Conditions")

And each transition becomes an
expansion of the source state
(nonterminal), listing of the
interactions and ending in the target
state.

A User Interface Grammar

click("Order Form")

click("order Form")
<

—
fLL)

submit("Place Order")

(Start) ::= (Order Form)

(Order Form) ::= click("Terms and Conditions") (Terms and Conditions)

A User Interface Grammar

=

" click("order Forn")
N
click("order Form")

Fil1(..)
submit("Place Order")

/

\ X

{Terns and Conditions)

(Start) ::= (Order Form)

(Order Form) ::= click("Terms and Conditions") (Terms and Conditions)

A User Interface Grammar

>

click("Order Form")
click("order Form")

(Start) ::= (Order Form)

(Order Form) ::= click("Terms and Conditions") (Terms and Conditions)

| fil1(..) submit("Place Order")

Multiple transitions become
alternatives.

A User Interface Grammar

click("order Form")
click("order Form")

\

P rd
(erms and Conditions)

(Start) ::= (Order Form)

(Order Form) ::= click("Terms and Conditions") (Terms and Conditions)

| fill(..) submit("Place Order") (Thank You)

A User Interface Grammar

-
o

(ll(k("Order Form")

LT

(start) ::= (Order Form)

(Order Form) ::= click("Terms and Conditions") (Terms and Conditions)
| fill(..) submit("Place Order") (Thank You)

(Terms and Conditions) ::= click("Order Form") (Order Form)

A User Interface Grammar

(Start) ::= (Order Form)

(Order Form) ::= click("Terms and Conditions") (Terms and Conditions)
| fill(..) submit("Place Order") (Thank You)

(Terms and Conditions) ::= click("Order Form") (Order Form)

(Thank You) ::= click("Order Form") {(Order Form)

A User Interface Grammar

Yow do we Specify

inped's 2o be generaded?

4 cllck(“Order Form")
cllck("Order Form") \

TTerns and Cund)t)or\s} t -

(Start) ::= (Order Form)

click("Terms and Conditions")

submit("Place Order")

(Order Form) ::= click("Terms and Conditions") (Terms and Conditions)
| fill(..) submit("Place Order") (Thank You)

(Terms and Conditions) ::= click("Order Form") (Order Form)

(Thank You) ::= click("Order Form") {(Order Form)

What you get is a grammar that is a
one to one representation of the
original finite state model.

A User Interface Grammar

Horo do we Specify

Inputs o be generaled?
7 V)

(Start) /::= (Order Form)
::= click("Terms and Conditions") (Terms and Conditions)

) submit("Place Order") (Thank You)

(Order

(Terms and Conditions) ::= click("Order Form") (Order Form)

(Thank You) ::= click("Order Form") {(Order Form)

Except that you can also make use of
grammar features

A User Interface Grammar

(Start) ::= (Order Form)

(Order Form) ::= click("Terms and Conditions") (Terms and Conditions)
| fill("Name", (Name))
fill("Email", (Email))
fill("city", (City))
FiLL("zip", (zip))
set("T+C", (Boolean))
submit("Place order")
(Thank You)

(Terms and Conditions) ::= click("Order Form") (Order Form)
(Thank You) ::= click("Order Form") {(Order Form)
(Name) ::= "Andreas Zeller" | "David Lo" | "piseldl ¢o gunldl oo guadl e ooi"

(Email) ::= "zeller®acm.org" | "({(e-mail)" | "'; DROP TABLE STUDENTS"

For instance, to characterize textual
inputs.

Covering Alternatives = Model Coverage

(start) ::= (Order Form®
(Order Form) ::= click("Terms and Conditions") (Terms and Conditions
| fill("Name", (Name))

Fill("Email", (Email))
Fil1("city", (City)) @' .
Fill("zip", (zip)) _— < ~a
set("T+C", (Boolean)) F 5/ ﬁ
submit("Place order") | - _/
(Thank Youl®@

(Terms and Conditions) ::= click("Order Form") (Order Forlp

(Thank You) ::= click("Order Form") {(Order Formf

(Name) ::= "Andreas zeller® | "David Lo® | "l oo gwedl oo guadl o de H‘w‘

(Email) ::= "zeller@acm.org® | "(e-mail)®@ | *'; DROP TABLE STUDENTS®

If you systematically cover all
alternatives in the grammar, you will
also cover all transitions and all states
in the finite state model.

Other Benefits

Ul grammars can be used for parsing as well as production
= Reuse and mutate existing input sequences and tests

= Use search-based evolutionary test generation techniques

Ul grammars can encode multiple input sources

= Fuzz with network inputs, intents, OS interaction

Ul grammars can be represented as visual finite state model

= Just in case you prefer diagrams over text

Demo

User Interface Grammars for Android

* Droidgram implements Ul grammar mining for Android
» Uses the Droidmate-2 test generator to obtain initial seeds

» Seamless transition between state models and grammar models

https://github.com/natanieljr/droidgram

We have implemented this approach
on android, where it mines and
applies Ul grammars of various apps.

User Interface Grammars for Android

 Evaluated on 46 apps from F-Droid (1,347 to 72,056 statements)
* Mined Ul grammars cover transitions and code faster with fewer inputs

« Integrates with any established technique for grammar-based testing

0

Actions

https://github.com/natanieljr/droidgram

This leads to faster exploration of
states and code with fewer inputs.

User Interfaces

“No matter how cool your interface is, it would be better if there were less of it.”— Alan Cooper

Perspectives

“It has long been an axiom of mine that the little things are infinitely the most important.” — A.C. Doyle

So, where does this leave us?

A Call for Modularity

* Every testing tool reinvents its Testing and Exploration Strategies
own model and analysis

« Makes it hard to assess,

Parsers and Producers
compare, and reuse approaches

« Call for solid formal foundations
and modular algorithms Interaction Models

» Draw on established fields such as
formal languages

User Interfaces

| think that our field can profit from a
much stronger separation of models
and strategies. We should make
models explicit, independent from
specific tools, and ground them well
in theory.

Perspectives
Mining

Universal
Languages

Keep in mind that we are only talking
about a small slice here in which
formal languages can support
software engineering, There are many

CanextSensive -- Domains ways languages, applications, and

Languages

Functions . .
domains, can be combined.
Stateful Systems
Context-Free
Languages . . Batch Systems
Testing Debugging Prevention
Applications
“It has long been an axiom of mine that the little things are infinitely the most important.” — A.C. Doyle
Mining Grammars Interactions as Grammars User Interface Grammars

Embedding State Models

e
s
W @AndreasZeller

Andreas Zeller, CISPA Helmholtz Center for
Information Security

Joint work with Nataniel P. Borges Jr., Manuel
Benz, and Eric Bodden

Abstract. To systematically explore user
interfaces, one must cover graphical
interaction features (e.g. clicks, swipes) as well
as textual interaction features (e.g. form input).
We introduce user interface grammars as a
single formalism that captures and integrates

graphical and textual input languages. A Ul
grammar encodes graphical interactions and
text input as a single (possibly nontrivial)
stream of input events, allowing for their
uniform treatment in test generation and/or
coverage measurement. Grammars can be
mined from existing systems (GUI-based or
text-based), allow for simple customization by
testers (say, for special inputs such as
passwords or injection attacks) as well as
guidance towards Ul (model) coverage and
code coverage. Includes live demos!

https://andreas-zeller.info/
https://www.cispa.saarland/

(Poster version)

Parsers

i

User Interface Grammars

« Every testing tool reinvents its Testing and Exploration Strategies
own model and analysis

+ Draw on established fields such as
formal languages

S|CISPA

