
@AndreasZeller

21 3Relevance, Simplicity, and Innovation:
Stories and Takeaways from SE Research

Andreas Zeller
Center for IT Security, Privacy, and Accountability

 Saarland University

ACM SIGSOFT Outstanding Research Award Keynote • ICSE 2018, Göteborg, Sweden • June 1, 2018

Relevance, Simplicity, and
Innovation: Stories and Takeaways
from Software Engineering
Research
ACM SIGSOFT Outstanding Research
Award Keynote • ICSE 2018,
Göteborg, Sweden • June 1, 2018
Andreas Zeller, CISPA / Saarland
University

@AndreasZeller

Abstract. The year is 1993, and I give my
very first talk at a big software engineering
conference. Right in the middle of my
example, a professor stands up and exclaims
with a mocking smile “To me, this looks like a
solution looking for a problem!”. The audience
erupts in laughter, and my advisor sits in the
first row, grinning. How would I get out of
there? And why would this experience shape
all of my career from now? Telling three
stories around three conference events, I
unfold lessons on impact in software
engineering research: Do relevant work – strive
for simplicity – keep on innovating.

@AndreasZeller@AndreasZeller

Thank you very much, everyone. I know
this has been a great conference, but now
you're eager to get to get to your planes,
to get back to your offices, to get back to
friends and family. So in the next couple
of minutes,

@AndreasZeller

21Three Stories3
I am going to restrict myself to three
short stories. Not more, not less. All
three of them are connected to some
conference talk, so I guess I'm in the
right place to share them.

@AndreasZeller

1November 9, 1993

All these stories revolve around talks
at conferences, and here's my first
one, almost 25 years ago. This is in
1993

@AndreasZeller

1November 9, 1993
SE Conference • Dortmund

at the German national conference for
Software Engineering, in Dortmund,
Germany. Anyone from Dortmund,
here? At this time, I am a PhD
student, and this

@AndreasZeller

my first talk ever

Is my first talk ever.

@AndreasZeller

NORA

I am presenting an experimental
programming environment called
NORA. NORA stands

@AndreasZeller

NO
Real

Acronym

for no real acronym, so it's pretty
generic, but what this is about is
actually

@AndreasZeller

Theorem Provers in SE

one of the first uses of theorem
provers in Software Engineering.

@AndreasZeller

Configuration Management
with Feature Logic

My own topic would be configuration
management with feature logic, using
features to represent variability and
changes

@AndreasZeller

Component Search

Our key example that day, however,
would be component search.

@AndreasZeller

Find a sorting function

The idea is that you'd have a huge
library of components, and you'd be
able to find a sorting function

@AndreasZeller

using postconditions

by specifying the pre- and
postconditions of the function you're
searching for.

@AndreasZeller

∀i, j: i < j ⇒ a′[i] ≤ a′[j]

So, here's the postcondition. You
want the resulting array a' to be
sorted.

@AndreasZeller

∀i, j: i < j ⇒ a′[i] ≤ a′[j]

∧ ∀x ∈ a ∪ a′: |{i: x = a[i]}| = |{j: x = a′[j]}|

But then, the output array also has to
be a permutation of the input array, so
you have to add that little extra. So,
after entering all this, I was showing
how our system would now retrieve
the sorting function, when right in the
middle of my talk, a guy stands up
and shouts

@AndreasZeller

“When I search a sorting function, 
I do grep sort”

"When I search for a sorting function,
I do grep sort!" – to the great laughter
of all attendees, maybe 100–150
people.

@AndreasZeller

∀i, j: i < j ⇒ a′[i] ≤ a′[j]

∧ ∀x ∈ a ∪ a′: |{i: x = a[i]}| = |{j: x = a′[j]}|

I look to my advisor, he's sitting in the first
row, crossing his arms and grinning: How
would I get out of that? So, I explain that
this of course would not be sorting alone,
you could even find a sorting function when
you did not even have a name for sorting,
and I restart – when another guy pops up
and shouts:

@AndreasZeller

“A solution
looking for a problem”

"You know, to me this looks like a
solution looking for a problem"

@AndreasZeller

“I do grep sort”

“A solution
looking for a problem”

“grep sort” “ha ha”

“looking for a
problem”

“What a joke”

“a problem”

“ha ha ha”

“wooo”“haha”
“ha ha ha”

“haha”

“woohaha” “haha”

“haha”

This closes it. I am done; I go through
the remaining slides, but nobody listens
anymore, and for the rest of the day,
there's people laughing and pointing
when they see me,

@AndreasZeller

a joke

and I am eager to get the train home.
All the way back, I am still enraged.

@AndreasZeller

So that was the story of my first talk.
Is the story over yet? Not quite.
There's a couple of ways I can spin
the remainder of the story.

@AndreasZeller

Rise from the ashes

I could tell how after being utterly
devastated, I finally managed to find my
path, and still make a great career in
computer science. Guys, girls – don't
listen to what old white farts say, follow
your dreams, and in the end, you'll get
married and have many children tenured
and have many papers accepted.

@AndreasZeller

Today, I am right

I could also spin this from the angle of
how important and ubiquitous theorem
provers are today, how all of verification,
testing, analysis depends on constraint
solvers, model checkers, you name it.
We were among the first, and today, I am
right.

@AndreasZeller

Relevance

But the spin I'd like to give this story
is yet another one, namely the
question of relevance. Today, when I
think back of this story,

@AndreasZeller

They were right

It turns out that these guys shouting
into my talk were right all along.
Think of how programmers work
when they search for some function.

@AndreasZeller

Google

They go to Google

@AndreasZeller

StackOverflow

They go to StackOverflow

@AndreasZeller

grep sort is everywhere

So much of programming is searching
today. It is "grep sort" everywhere.

@AndreasZeller

They were right

So, the essence of the story is that
they were right all along – developers
want simple tools that work, not some
made-up formalism that only PhD
students understand.

@AndreasZeller

DDD

One important consequence for me was
that I started a sideline these days,
together with a student of mine, Dorothea
Lütkehaus. Already in my master's thesis,
I had built a library that could visualize
data structures. We thought of building
this into a debugger, and built a tool,
called DDD

@AndreasZeller

Data Display Debugger

for Data Display Debugger

@AndreasZeller

This is it

@AndreasZeller@AndreasZeller

And at the top, you can see DDD
nicely visualizing a linked list

@AndreasZeller

DDD

Now, it turned out that DDD was
among the first debuggers with a
decent graphical user interface.
People loved it.

@AndreasZeller

GNU DDD

It became a GNU program – I got a
nice letter by Richard Stallman –

@AndreasZeller

postcards

– and developers from all over the
world sent in postcards to thank us
for making it available.

@AndreasZeller

postcards vs. citations

These postcards at the time were far
more important to me than citations I
would get. People were actually
using my stuff.

@AndreasZeller

tool vs. paper

This is because DDD was a tool that
would get things done, with
immediate usefulness.

@AndreasZeller

concrete vs. abstract

A concrete benefit, not just some
abstract concept that may or may not
be adopted.

@AndreasZeller

useful

The key metric here is usefulness.
DDD was clearly useful. And this
usefulness was

@AndreasZeller

useful = better

that made it better than the state of
practice. Usefulness is the key metric in
Software Engineering, so this experience
prompted me to ask questions like

@AndreasZeller

Is my research useful?

Is my research useful?

@AndreasZeller

for whom?

And for whom?

@AndreasZeller

What do developers need?

What is it that developers – our
customers, our key audience –
 actually need?

@AndreasZeller

where I should be

where I was So here I was with my research,
feature logic, theorem provers – but I
felt out of place.

@AndreasZeller

What do developers need?

What is it that developers actually
need? We can ask them.

@AndreasZeller

Analyze this!

Analyze This! 145 Questions for
Data Scientists in Software Engineering

Andrew Begel

Microsoft Research
Redmond, WA, USA

Andrew.Begel@microsoft.com

Thomas Zimmermann
Microsoft Research
Redmond, WA, USA

tzimmer@microsoft.com

ABSTRACT
In this paper, we present the results from two surveys related to data
science applied to software engineering. The first survey solicited
questions that software engineers would like data scientists to in-
vestigate about software, about software processes and practices,
and about software engineers. Our analyses resulted in a list of 145
questions grouped into 12 categories. The second survey asked a
different pool of software engineers to rate these 145 questions and
identify the most important ones to work on first. Respondents fa-
vored questions that focus on how customers typically use their ap-
plications. We also saw opposition to questions that assess the per-
formance of individual employees or compare them with one an-
other. Our categorization and catalog of 145 questions can help re-
searchers, practitioners, and educators to more easily focus their ef-
forts on topics that are important to the software industry.

Categories and Subject Descriptors: D.2.9 [Management]
General Terms: Management, Human factors, Measurement
Keywords: Data Science, Software Engineering, Analytics

1. INTRODUCTION
Due to the increased availability of data and computing power over
the past few years, data science and analytics have become im-
portant topics of investigation [1]. Businesses of all types com-
monly use analytics to better reach and understand their customers
[2]. Even sporting teams use analytics to improve their performance
as described in the book “Moneyball” [3]. Many software engineer-
ing researchers have argued for more use of data for decision-mak-
ing [4,5,6]. As more and more companies start to analyze their soft-
ware data, the demand for data scientists in software projects will
grow rapidly. Though Harvard Business Review named the job of
Data Scientist as the Sexiest Job of the 21st Century [7], by 2018,
the U.S. may face a shortage of as many as 190,000 people with
analytical expertise and of 1.5 million managers and analysts with
the skills to make data-driven decisions, according to a report by
the McKinsey Global Institute [8].
Several people have offered advice on the important questions that
academic and industry data scientists should focus. In his “Two
Solitudes” keynote at the Mining Software Repositories Vision
2020 event in Kingston, Greg Wilson presented a list of ten ques-
tions for empirical researchers that a Mozilla developer sent to him
in response to the following request: [9]

“I'm giving a talk on Monday to a room full of software engineer-
ing researchers who are specialists in data-mining software re-
positories (among other things). If you could get them to tackle
any questions at all (well, any related to software or software de-
velopment), what would you want them to do, and why?”

In an introduction to an empirical software engineering panel at
ESEC/FSE 2013, Bertrand Meyer emphasized the need for the soft-
ware engineering community to become more data-driven, and to
“shed folkloric advice and anecdotal evidence.” He presented a list
of 11 questions “crying for evidence” [10] whose answers should
be empirical, credible, and useful. By useful, Meyer meant,
“providing answers to questions of interest to practitioners.”
In this paper, we present a ranked list of questions that software
engineers want to have answered by data scientists. The list was
compiled from two surveys that we deployed among professional
software engineers at Microsoft (Section 3).

1. In the first survey, we asked a random sample of 1,500 Mi-
crosoft engineers a question similar to Greg Wilson’s. We
asked “Please list up to five questions you would like [a team
of data scientists who specialize in studying how software is
developed] to answer.” After received 728 response items
from 203 software engineers, we filtered and grouped them
into 679 questions in 12 categories. We then distilled these
into 145 descriptive questions (Section 4.1).

2. We deployed a second survey to a new sample of 2,500 Mi-
crosoft engineers to help us prioritize the 145 descriptive ques-
tions by indicating the most important ones to work on. We
received 16,765 ratings from 607 Microsoft engineers. These
ratings additionally enabled us to identify differences of opin-
ion between various demographic groups, for example, ques-
tions that were more important to testers than to developers
(Sections 4.2 and 4.3).

Our findings suggest that engineers favor questions that focus on
how customers typically use their applications. We also observe
opposition against the use of analytics to assess the performance of
individual employees or compare them with one another.
Our catalog of 145 questions is relevant for research, industry prac-
tice, and software engineering education (Section 5). For research-
ers, the descriptive questions outline opportunities to collaborate
with industry and influence their software development processes,
practices, and tools. For those in industry, the list of questions iden-
tifies particular data to collect and analyze to find answers, as well
as the need to build collection and analysis tools at industrial scale.
Lastly, for educators, the questions provide guidance on what ana-
lytical techniques to teach in courses for future data scientists, as
well as providing instruction on topics of importance to industry
(which students always appreciate). As pointed out earlier [8], there
will be huge demand for people who are educated enough to know
how to make use of data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICSE’14, May 31 – June 7, 2014, Hyderabad, India.
Copyright 2014 ACM 978-1-4503-2756-5/14/05... $15.00.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

Copyright is held by the author/owner(s). Publication rights licensed to ACM.

ICSE’14, May 31 – June 7, 2014, Hyderabad, India

ACM 978-1-4503-2756-5/14/05

http://dx.doi.org/10.1145/2568225.2568233

12

* Do people ever write loop invariants?
Does it help?

* How do we measure the productivity of
our engineers?

* How do users typically use my
application?

There's this extremely nice survey by
Andy Begel and Tom Zimmermann at
Microsoft from ICSE 2014, including
questions such as the above

@AndreasZeller

recommenders?

Now, the word "recommender" does
not occur in that paper.

@AndreasZeller

models?

Nor does the word "model" occur.

@AndreasZeller

repair?

Nor "repair".

@AndreasZeller

where I should be

where I was Remember this slide, when I had my
doubts?

@AndreasZeller

where we should be

where we are

security

machine learning

human factors

reliability

privacy

safety
bias

process
cyber-physical 

systems

scientific 
software

training

I think that given the number of problems
we are facing today – or still facing after all
these years – we still are very much where
the light is bright, where we know our
strengths. Yet, maybe, we should venture
out a bit more into the darkness. Talk to
developers, talk to industry, find out where
the real challenges are – and face them.

@AndreasZeller

assume nothing

But when talking to developers, do
not assume they will change anything
because of you. They will not adopt
your formal method just because you
say so.

@AndreasZeller

pave a way

Make sure that they can adopt your
approach with minimal effort. And
pave a way toward this transition.

@AndreasZeller

paper culture

And here, I am not sure whether our
paper-centric culture is the best way to
achieve this. You are literally asking the
reader to rebuild everything you
describe.

@AndreasZeller

tool vs. paper

Actually, I think that tools are a much
better way to achieve impact and
relevance.

@AndreasZeller

tool and paper

And even better, I think that we
should go and bring both together.
I'd like to show an example.

@AndreasZeller

Jupyter Notebook

You may have heard of the Jupyter
Notebook

@AndreasZeller

Jupyter Notebook
ACM Software System Award 2018

And if you haven't – they just got the
software system award from ACM

@AndreasZeller

With Jupyter, you have a mix of text
and code; you can edit both, and you
can execute the code to immediately
see the results of your actions. You
have math typesetting, you have
plots, you even have interactive
elements such as sliders. All updated
in real time.

Now, this is great for teaching, for
students, for instructors. But if this
were a scientific paper, what would it
mean?

@AndreasZeller

Small programs

 You could have small programs that
embody the gist of your algorithm.
Small programs

@AndreasZeller

can be examined

that can be examined

@AndreasZeller

can be experimented with

that can be assessed and
experimented with

@AndreasZeller

can be taught

that can be taught

@AndreasZeller

can be used

that can be used by others –

@AndreasZeller

used

used

@AndreasZeller

reused

and reused.

@AndreasZeller

tool and paper

You'd have both: the tool and the
paper.

@AndreasZeller

paper?

Actually, why still have paper?

@AndreasZeller

21Three Stories3
That was my first story – on
relevance.

@AndreasZeller

2September 9, 1999

My second story is on simplicity. Six
years later, it is 1999

@AndreasZeller

2September 9, 1999
ESEC/FSE • Toulouse

And we are at ESEC/FSE, Toulouse,
France

@AndreasZeller

PhD on version control

I have completed my PhD on version
control

@AndreasZeller

DDD debugger

and the experience with DDD had
raised my interest in debugging.

@AndreasZeller

delta debugging

So I had come up with an idea that
combines both: Version control and
debugging

@AndreasZeller

The core idea of delta debugging is very
simple. You have a big set of possible
influences (here's one big set of things),
and in there, there's a small set that
causes what you're looking for.

@AndreasZeller

You can test, though, whether what
you're searching for is in the set. So
you try out one half

@AndreasZeller

And another half. Turns out the cause
is in here, so you keep it.

@AndreasZeller

You repeat the process. Remove one
half – hey, the effect is still there.

@AndreasZeller

Again

@AndreasZeller

And again

@AndreasZeller

Turns out that now, it's in the other
half

@AndreasZeller

You keep on narrowing

@AndreasZeller

And narrowing

@AndreasZeller

And narrowing

@AndreasZeller

And narrowing further. That's a bit
small, right?

@AndreasZeller

@AndreasZeller@AndreasZeller

Okay, we'll go and enlarge things

@AndreasZeller

This is what a process like delta
debugging finds – the small subset that
causes the bug. Can be in your input, in
your version history, in your configuration

@AndreasZeller

And it's typically a very tiny element
or difference

@AndreasZeller

in a big, big set.

@AndreasZeller

@AndreasZeller

\302\n

And if you have, say 2,000 lines of
nroff input, it will reduce these to just
two characters

@AndreasZeller

first talk on delta debugging

So, this is what I presented in Toulouse in
1999, and it was very well received, big
applause and all. But after the talk, right
as I get out of the room, there's a senior
professor from France who is very
agitated. He shouts at me (with French
accent)

@AndreasZeller

“I would never have thought

"I would never hav sought

@AndreasZeller

that something so simple

zat somesing so simple

@AndreasZeller

could be accepted at a scientific
conference”

could be accepted at a scientific
conférence!"

@AndreasZeller

Yeah. Here we were. How could I
continue this story?

@AndreasZeller

Intellectual superiority

Maybe on how the scientific styles differ
from country to country. If I wanted to
impress my audience with my intellectual
prowess, filling the talk with formulas and
special terms such that nobody can
follow and everyone recognizes my
superiority (I hear they do this in France),
well, then delta debugging would not be
it.

@AndreasZeller

Impostor syndrome

I could also talk on how this raised
doubts in me on whether I'd done the
right thing. Anybody could have come up
with this! How did I deserve to be called
a scientist? And how does the audience
not see I am a fraud?

@AndreasZellerImpostor syndrome

I could also talk on how this raised
doubts in me on whether I'd done the
right thing. Anybody could have come up
with this! How did I deserve to be called
a scientist? And how does the audience
not see I am a fraud?

@AndreasZeller

Simplicity

However, the way I'd like to spin the
story here is simplicity.

@AndreasZeller

something so simple

Remember: "somesing so simple".

@AndreasZeller

complexity

What's the alternative to simplicity?
Well, complexity. And complexity

@AndreasZeller

complexity is our enemy

Is our enemy.

@AndreasZeller

control complexity

which we have to control

@AndreasZeller

– Pamela Zave

The purpose of software engineering 
 is to control complexity, not to create it.”

As put forward in this wonderful quote
by Pamela Zave

@AndreasZeller

Making complex things simpler

So let this be the essence of SE. and,
by the way, of delta debugging.

@AndreasZeller

one year

And I'd like to point out that it had
taken me one year to make delta
debugging as simple as it was

@AndreasZeller

simple = hard

So making things simple is hard work

@AndreasZeller

simple = better

But simplicity makes all of our lives
much better

@AndreasZeller

Debugging Reinvented

And by the way, while praising
simplicity, I'd like to take the
opportunity to honor Andy Ko and
Brad Myers, whose approach to
debugging is for me the epitome of
simplicity.

@AndreasZeller

simple = better

But then, such simplicity is hard to
find.

@AndreasZeller

graduate school

A few years ago, I visited a high-profile
graduate school. One of the best
universities in the country, extremely
selective, extremely ambitious. So there's
20, 25 students in the room, and they tell
me they are expected

@AndreasZeller

one paper per year

to publish one paper per year. But
not anywhere,

@AndreasZeller

one paper per year
at a flagship conference

but not anywhere – at ICSE, FSE,
ASE.

@AndreasZeller

one year making things simple

Now remember: I spent one year
refining delta debugging. I don't think
I had a paper in 97 or 98.

@AndreasZeller

getting a paper accepted is easy

 But then, fortunately, it turns out that
getting a paper accepted is easy. All
you need

@AndreasZeller

a recipe

is a recipe – for doing research that
will get accepted. One such recipe is

@AndreasZeller

a simple approach

to take a simple approach

@AndreasZeller@AndreasZeller

say, something we use every day. A
napkin, for instance.

Picture source: Wikipedia

@AndreasZeller@AndreasZeller

You then add some increment to it.
Make it more automated. Say, add
machine learning.

@AndreasZeller@AndreasZeller

Make it dependent on context, such
that it will work well in that context. If
not, cut it off.

@AndreasZeller@AndreasZeller

Integrate all this into the user's
environment. Just continue adding
and adding

@AndreasZeller

Until it gets better. Say, 2% more
precision. 5% more area under the
curve. Errors found.

@AndreasZeller

Reviewers get this

This is so great, because even if
reviewers do not understand your
approach at all, they will understand the
improvement.

@AndreasZeller

a complex approach that is better

What you then have is a complex
approach that is better

@AndreasZeller

complex is better than simple

But then, is this really the case? With
such complexity, who wants to re-
implement your approach? Who
wants to use it?

@AndreasZeller

– Pamela Zave

The purpose of software engineering 
 is to control complexity, not to create it.”

Maybe it is time to apply our
principles to our own research.

@AndreasZeller

more recipes

There's more such recipes, of course; and
you may argue: So what? Who cares
about a paper too complex getting in?
Well, the problem is that such papers

@AndreasZeller

obstruct scientific progress

obstruct the scientific progress –
 because the only way to get even
better results

@AndreasZeller

more complex = even better

is to build something that is even
more complex. This helps nobody.

@AndreasZeller

So we end up with contraptions that
are more and more complex, and yes!
They automate something! And yes!
They are better than manual work!
Yet, this helps nobody.

Picture source: Wikipedia

@AndreasZeller

Would something so simple

And I wonder: Would something so
simple

@AndreasZeller

as delta debugging

as delta debugging

@AndreasZeller

get accepted today?

get accepted at this scientific
conference – today?

@AndreasZeller

21Three Stories3
Okay, we're short on time, so let me
close with the third story.

@AndreasZeller

3September 23, 2004

Again, five years later. It is a Saturday
morning in 2004,

@AndreasZeller

3September 23, 2004
ICSE Technical Papers Deadline

and it is the day of the ICSE deadline.
You know ICSE deadlines, right?

@AndreasZeller

professor since three years

I'm a tenured professor,

@AndreasZeller

full professor

actually full professor

@AndreasZeller

delta debugging + DDD

a position which I got through delta
debugging and DDD

@AndreasZeller

students

a new thing: I now have students.

@AndreasZeller

Here's one. You know that guy? It's
Tom Zimmermann.

@AndreasZeller

analyzing version histories

With Tom, we systematically analyze
version histories

@AndreasZeller

co-changes

Specifically, we look for co-changes,

@AndreasZeller

People who changed A
also changed B

That is, changes involving multiple
components at once.

@AndreasZeller

src/file.c ⟺ doc/schema.jpg

We find relationships. For instance,
whenever someone changes file.c, the file
schema.jpg is also changed. Why is
that? Turns out file.c has an embedded
SQL statement, and schema.jpg is a
picture of the database schema. When
the schema changes, so does the SQL
statement. Find that, static analysis!

@AndreasZeller

recommend changes

We can go and recommend changes

@AndreasZeller

src/file.c⇒ doc/schema.jpg

Change A, you also need to change B

@AndreasZeller

precision and recall

And we struggle with accuracy
metrics such as precision and recall,
which are all new to us. (As also for
the SE community)

@AndreasZeller

September 23, 2004
ICSE Technical Papers Deadline

So it is the Saturday of the deadline;
deadline is around noon in Europe;

@AndreasZeller

precision and recall

And we are still struggling with these
metrics. This is when Tom calls in at
10am – two hours before the
deadline.

@AndreasZeller

precision and recall > 90%

He says he has found a way to boost
precision and recall above 90%. And I tell
him, this is great, but this sounds to good
to be true, so please check and re-check.

@AndreasZeller

training from the testing set

One hour later, one hour before the
deadline, he finds he has accidentally
trained from the testing set. So, we're
back to our old values, and we
submit.

@AndreasZeller

reviewers are unsure

The reviews are mixed. The reviewers
clearly don't know what to do with
this

@AndreasZeller

but accept anyway

but accept anyway

@AndreasZeller

Mining version histories
to guide software changes

The paper title is "Mining version
histories to guide software changes"

@AndreasZeller

1,200+ citations

Today, it has more than 1200 citations

@AndreasZeller

1,200+ citations
ICSE n-10 most influential paper award

Three years ago, Tom, Stefan, Peter,
and I got the most influential paper
award.

@AndreasZeller

So again, how do I spin this story? I
could tell something about

@AndreasZeller

Quality assurance in research

how important it is to do thorough
quality assurance, how to ensure your
results are reproducible and all, and
yes, it is.

@AndreasZeller

We were so lucky

I could also spin how lucky we were,
as Gail Murphy and her student Annie
Ying were working on exactly the
same topic, with the same results, but
decided not to go for ICSE because
they wanted better precision and
recall. Luck is the most important
factor for success.

@AndreasZeller

Innovation

But the lesson to be learned from this,
for me, is innovation. Actually, our
concerns about

@AndreasZeller

numbers

precision and recall

@AndreasZeller

did not matter

 did not matter.

@AndreasZeller

nothing to compare against

simply because there was nothing to
compare against.

@AndreasZeller

all new

Our approach was entirely new,
finding things that no-one else did.

@AndreasZeller

new = better

It was new, and new was better.

@AndreasZeller

where I would be

where I was

debugging

mining software archives

machine learning

symbolic verification

automatic parallelization

natural language processing

test generation

mutation testing

specification mining

software security

service

app mining

Going from debugging to mining software
archives was one step towards something
new, and I have kept on moving since
then, exploring dozens of new fields –
 sometimes successful, sometimes not so
– but always learning, always progressing.

@AndreasZeller

with many great students

And that's not me. That's me and
many great students, whom I admire
and love very much.

@AndreasZeller

work that is simple and relevant

And work that would be simple and have
impact in practice

@AndreasZeller

Delta debugging

Fuzzing with 
code fragments

Mining software archives

Checking app behavior
against app descriptions

work that is simple and relevant

* Delta debugging narrows down failure causes

* Mining software archives yields empirical findings

* Grammar-based fuzzing tests JavaScript interpreters

in all browsers

* Apps are checked against descriptions and

categories (at Google/Microsoft)

@AndreasZeller

we need patience

But we'd also need patience

@AndreasZeller

entering a new area = 1–2 years

Because if you enter a new area, it
takes a year at least to understand
how it works

@AndreasZeller

getting cited = many years

And if you have something really new,
it can take many years until it gets
cited.

@AndreasZeller

a trusting environment

I was very glad I had an environment
that would trust me:

@AndreasZeller

Saarland Informatics Campus

the Saarland Informatics Campus in
Saarbrücken, Germany

@AndreasZeller

the hire with lowest # of papers

When I got hired, I was the one
candidate with the lowest number of
papers.

@AndreasZeller

never evaluated my research

Nobody ever checked my publication
counts.

@AndreasZeller

impact alone counts

The only thing that matters, they told
me, will be your impact

@AndreasZeller

even if it takes decades

even if it takes years or decades to
build

@AndreasZeller

trust in me

They took enormous risks, they put in
an enormous trust. They trusted me
all this time –

@AndreasZeller

thank you

and here I am today. Thank you so
much.

@AndreasZeller

(short pause)

@AndreasZeller

In this moment, as I am standing here, I
realize how lucky I was, again and again.
Most of us have to struggle hard in our
daily work, trying to fulfill the most absurd
incentives and regulations.

[Source: https://en.wikipedia.org/wiki/
Sisyphus]

@AndreasZeller

Survivor bias

 I missed almost all of this. I was lucky,
and my luck is why I am standing here.

@AndreasZeller

go here

if you are here But whether you are lucky or not –
these hold for all of us:

If you are in the light, go explore the
dark

@AndreasZeller

search for relevant problems

Find out what is relevant

@AndreasZeller

search for simple solutions

Find out simple solutions

@AndreasZeller

keep on innovating

Keep on innovating

@AndreasZeller

sapere aude

@AndreasZeller

As the Romans say, "sapere aude":
Dare to think for yourself, dare to be
wise;

@AndreasZeller

Dare to know

Or simply: Dare to know.

@AndreasZeller

That's it folks – three stories, three
takeaways

@AndreasZeller

21Three Stories
Three Takeaways3

•Make sure your research is relevant
•Talk to practitioners for real problems
•Make results actionable, usable, assessable
•Useful = better!

•Always search for the simplest solution
•Complexity prevents adoption, teaching, progress
•Be aware of complexity recipes
•Simple = better!

• Keep on learning, keep on innovating
• Aim and have others aim for long-term incentives
• Dare to know!

•See @AndreasZeller  
for slides and manuscript

on • relevance, • simplicity, and •
innovation.

Now go out and create masterpieces of
Software Engineering –

and • see you next year in Montreal!

