Learning the Language of Failure

Andreas Zeller £ “ICIS PA

with Bahul Goginath and Zolle’s toam at CISPA

Learning the Language of Failure
Andreas Zeller, CISPA Helmholtz Center for
Information Security

Joint work with Rahul Gopinath and Zeller’s
team at CISPA

Watch: ntips://www.youtube.com/watch?v=3ZW1DI2Pxvl

When diagnosing why a program fails, one of
the first steps is to precisely understand the
circumstances of the failure — that is, when the
failure occurs and when it does not. Such
circumstances are necessary for three
reasons. First, one needs them to precisely
predict when the failure takes place; this is
important to devise the severity of the failure.
Second, one needs them to design a precise
fix: A fix that addresses only a subset of
circumstances is incomplete, while a fix that
addresses a superset may alter behavior in
non-failing scenarios. Third, one can use them
to create test cases that reproduce the failure
and eventually validate the fix.

In this talk, | present and introduce tools and
techniques that automatically learn
circumstances of a given failure, expressed
over features of input elements. | show how to
automatically infer input languages as
readable grammars, how to use these
grammars for massive fuzzing, and how to
systematically and precisely characterize the
set of inputs that causes a given failure — the
"language of failure".

https://andreas-zeller.info/
https://www.cispa.saarland/

Failure

Welcome everyone to "Learning the
Language of Failure". These five
words will follow us throughout the
talk. To begin, lets talk about failures.

Failure

Actually, my work always has been
about failures. (The work itself has
been less of a failure.)

F3 00D: fpubiicisour,
File Edit View Program

Debugging Failures

0| 1ist->sel]

t %) 0x804dr80)

:
e
o

= new List(a globa] + start+);
- new List(agiobal + Startes;
= Tist;

/1 visplay this

2 mistake, try Edit—>Undo. This il undo the most
er command and redisplay the previous progra s

=
tate,

(ad) graph display *(listoon
(gdb) [

ext-onext->self) dependent on 4

SRS

sssssssssssssssss A list= (List *) 0xaD4dF0

As a PhD student still, Dorothea
Litkehaus and myself built GNU DDD,
a GUI front-end for command line
debuggers. Great for debugging
failures.

top [uti
f

bultins

“Mining Failure Data . - ..

addrbook | compose | Import huml
outl ent[doc| src it

ssssss wilcend |smim

@ o reflect |[string [typelib||[15192p
ixptcal [x |[pu [sr)xpi[x

Later, my co-workers and | would
mine version and bug repositories to
see where in a program the most
bugs would be fixed. This is a map of
Firefox components (boxes) and
vulnerabilities (shades of red).

|
e L .
=3 Hipro Almost all vulnerabilities are in
T H in lin ht bu
Mining Failure Data" gfx .
g : JavaScript.
Js ps xlib | mac |[theb
Src tamarin
xpconnect liveco core qt |d
Src test S 0s2
gtk windo be |xp
: x11sh xprf
fdlib pcre |code [MM =
cairo t
cairo glitz
src src
shell |plle
. : = = libpixma
= A

Simplifying Failures

8.2 - 27 - -9 / +((+9 * -2 4 ——4-+-((-1 =
+(8 = 5 - 6)) * (~((-+(((+(4))))) - ++4) / +
(-+---((5.6 - --(3 * -1.8 * +(6 * +-(((-(-6)
% ===+6)) / +--(4-+-7 % (-0 * (+(((((2)) + 8
-3 - 449,00 + ---(--+7 / (1 / +++6.37) + (1)
/ 482) / +++-+0)))) * -+5 + 7.513)))) -

(+1 / ++((-84)))))))) * ++5 / +-(--2 - -+
+-9.0)))) / 5 * --++090

Interpreter

Another contribution my name is
associated with is simplifying failure-
inducing inputs. Here's a long input
that causes a program to fail.

Simplifying Failures

(8 -5)

Interpreter

Yet, only a part of this input actually is
relevant for the failure.

Delta Debugging

8.2 - 27 - -9 / +((+9 % --2 + --+-+-((-1 =
+(8 -5 -6)) * (-((-+(((+(4))))) - ++4) / +
(-+---((5.6 - --(3 * -1.8 » +(6 » +-(((-(-6)
* -==+6)) / +--(+-+-7 * (-0 * (+(((((2)) + 8
-3 - +49.0 + ---(--+7 / (1 / +++6.37) + (1)
/ 482) / +++-+0)))) * -+5 + 7.513)))) -

(+1 / ++((-84)))))))) * ++5 / +-(--2 - -+
+-9.0)))) / 5 % --++090

Interpreter

zzzzzzz

Delta debugging automatically
determines this failure-inducing
subset.

Delta Debugging

8.2 - 27 - -9 / +((+9 * --2 + —-4-4-((-1 *
+(8 - 5 -6)) * (-((-+(((+(4))))) - ++4) / «
(e--=((5.6 = ~-(3 * -1.8 * +(6 * +-(((-(“6)
* ==-+6)) [/ +--(+-+-7 *

Interpreter

e 2002

Delta Debugging takes away parts of
the input and checks whether the
failure still occurs.

Delta Debugging

(-0 » (+(((((2)) + 8
-3 - +49.0 + ---(--+7 / (1 / +++6.37) + (1)
/ 482) / +++-+0)))) * -+5 + 7.513)))) -
(+1 / ++((-84)))))))) * ++5 / +-(--2 - -+
+-9.0)))) / 5 % --++090

Interpreter

Such reduced inputs can be invalid,
though.

Delta Debugging

+((+9 * --2 + —-+-+-((-1 =
+(8 -5 -6)) * (-((-+(((+(4))))) - ++4) / «
(4---((5.6 = ~=(3 * -1.8 * +(6 = +-(((~(~6)
* ===6)) /[+--(+-+-7 % (-0« (+(((((2)) + 8
-3 - +49.0 + ---(--+7 / (1 / +++6.37) + (1)
/ 482) / +++-+0)))) * -+5 + 7.513)))) -
(+1 / ++((-84)))))))) * ++5 / +=(--2 - -+
+-9.0)))) / 5 * --++090

Interpreter

e 2002

Then, delta debugging takes out
smaller parts and repeats.

At the end, it easily determines which

Delta Debugging characters are necessary for the
failure to occur.
-5) W,
Such as these ones, for instance.
Delta Debugging
1 % (8 - 5)

e 2002

Thisisto certify that

Andre 115,7\6[[5 -

has been honored with the designation of
ACM FELLOW

in recognition of outstanding techmical and professional
achievements in the field of information technology.

June zont

These things made me an ACM
Fellow "For contributions to
automated debugging and mining
software archives".

Failure

« You can mine version and bug histories to find out where the failures are
* You can simplify inputs to find out what causes the failure

* You can make a career out of failure

Which tells you that you can make a
career out of failures.

The Language of Failure

Okay, that was failures. Now, let's
move to languages.

Fuzzing

8.2 - 27 - =9 / +((+9 % -=2 + ——+-+-((-1 *
+(8 -5 -6)) * (~((-+(((+(4))))) - ++4) / +

(-+---((5.6 - --(3 * -1.8 » +(6 * +-(((-(-6)

* _--§6)) / &--(+-+-7 * ('0 * (“'(((((2)) + 8 Interpreter
S 3 - 440.0 4 —m-(--+7 / (1 / +++6.37) + (1) P

/ 482) / +++-40)))) * -+5 + 7.513)))) -

(+1 / ++((-84)))))))) * ++5 / +-(--2 - -+

+-9.0)))) / 5 % --++090

Fuzzing means to throw random
inputs at a program to see if it
crashes.

Dumb Fuzzing

(144 60)5(5-(05+/(* %)910)25/509505)3)/
09211762 /(7%+22)76-+/29+/b*x2+

8()04/844)

4)632/3/7 %0525+)7x

Interpreter

But if you just take sequences of
random characters and throw them at
an interpreter, all you're going to get is
syntax errors. (It's okay to test syntax
error handling, but this should not be
all.)

‘ a MEGEREERY © = @ S=T o 1npuTS)

—

In order to get syntactically valid
inputs, you need a specification. A
grammar specifies the set of inputs
as a language.

(start) = (expr)
(expr erm) (expr) | (term) - ({expr) \
(term) <term) * (factor) | (term) / (factor actor)
(factor) ::= + (factor) | - (factor) | ((expr)) | (int) | {int) . (int)
(int) <d1g1t> (int) | (digit)
(digit) ::=G\1\2|3I4|5\6|7I8|€<
Terminal symbo
You may have seen grammars as
Grammars as Producers
parsers, but they can also be used as
(start) ::= (expr)
(expr) ::= (term) + (expr) | (term) - (expr) | (term) H
(term) ::= (term) = (factor) | (term) / (factor) | (factor) prOducers Of InpUtS'
(factor) ::= + (factor) | - (factor) | ((expr)) | (int) | (int) . (int)
(int) c:= (digit) (int) | (digit)
(digit) =0 [112131415161 71819

Grammars as Producers

(start) ::= (expr)

(start)

You start with a start symbol

Grammars as Producers

(start) ::= (expr)

(start)

Grammars as Producers

{expr) ti= (term) - (expr)

(expr)

which then subsequently gets
replaced according to the production
rules in the grammar.

Grammars as Producers

(expr) ii= (term) - (expr)

(term) - (expr)

If there are multiple alternatives, you
randomly choose one.

Grammars as Producers

(term) 1= (factor)

(term) - (expr)

Grammars as Producers

(term) ti= (factor)

(factor) - {(expr)

Grammars as Producers

(factor) ::= (int) . (int)

(int) . (int) - {(expr)

Grammars as Producers

(int) ti= (digit)

(digit) . (int) - (expr)

Grammars as Producers

(int) 1= (digit)

(digit) . (digit) - (expr)

Grammars as Producers

(digit) ::= 8

8. (digit) - (expr)

Over time, this gives you a
syntactically valid input. In our case, a
valid arithmetic expression.

Grammars as Producers

(digit) ::= 2

8.2 - (expr)

Actually, a pretty complex arithmetic
Grammars as Producers

expression.
(start) 1= (expr)
(expr) ::= (term) + (expr) | (term) - (expr) | (term)
(term) ::= (term) = (factor) | (term) / (factor) | (factor)
(factor) ::= + (factor) | - (factor) | ((expr)) | (int) | {int) . (int)
(int) c:= (digit) (int) | (digit)
(digit) =0l 112131415161 71819

8.2 - 27 - -9 / +((+9 % --2 + --+-+-((-1 =
+(8 - 5 -6)) * (-((-+(((+(4))))) - ++4) / +
(-+---((5.6 - --(3 * -1.8 » +(6 * +-(((-(-6)
* —==+6)) / +--(+-+-7 x (-0 * (+(((((2)) + 8
-3 - ++9.0 + ---(--+7 / (1 / +++6.37) + (1)
/ 482) / +++-+0)))) * -+5 + 7.513)))) -

(+1 / ++((-84)))))))) * ++5 / +-(--2 - -+
+-9.0)))) / 5 * --++090

These can now be used as input to

Fuzzing with Grammars your program.

8.2 - 27 - =9 / +((+9 % -=2 + ——+-+-((-1 *
+(8 -5 -6)) * (~((-+(((+(4))))) - ++4) / +

(-+---((5.6 - --(3 * -1.8 » +(6 * +-(((-(-6)

* _--§6)) / &--(+-+-7 * ('0 * (“'(((((2)) + 8 Interpreter
S 3 - 440.0 4 —m-(--+7 / (1 / +++6.37) + (1) P

/ 482) / +++-40)))) * -+5 + 7.513)))) -

(+1 / ++((-84)))))))) * ++5 / +-(--2 - -+

+-9.0)))) / 5 % --++090

Fuzzing with Grammars

A couple of years ago, we used a
JavaScript grammar to fuzz the
interpreters of Firefox, Chrome and
Edge.

My student Christian Holler found
more than 2,600 bugs, and in the first
four weeks, he netted more than
$50,000 in bug bounties. If you use a
browser to read this, one of the
reasons your browser works as it
should is because of grammar-based
fuzzing.

The Language of Failure

* Alanguage spec trivially gives you infinitely many, syntactically valid inputs
* Generation can be guided by grammar coverage/code coverage/probabilities

« Easily taught and applied

So this was the language of failure.

fuzzingbook.org

ese < < o c o 6 & o
wiislizin Sp—

The Fuzzing Book

Tools and Techniques for Generating Software Tests

by Andreas Zeller, Rahul Gopinath, Marcel Bohme, Gordon Fraser, and Christian Holler

About this Book ¥

Welcome to "The Fuzzing Bo

e has bugs, and catching bugs lots of effort. This book addresses this problem by automating

lead to dramatic

are testing. They now are assembled in a book - even with executable code.

rrrrrrrrrr

We have put all our knowledge on
fuzzing and grammars into a book
named the fuzzingbook, where you
can actually try out all the basic
algorithms yourself.

The Language of Failure

« Alanguage spec trivially gives you infinitely many, syntactically valid inputs

» Generation can be guided by grammar coverage/code coverage/probabilities
« Easily taught and applied

And if you are interested in how to
use grammar for fuzzing, the book will
give you lots of inspiration.

Learning the Language

But all of this still requires a grammar
in the first place.

Fuzzing with Grammars

@ Fuzzer Interpreter

So where did you get this grammar
from?

Mining Grammars

(start) ::= (expr)

(expr) ::= (term) + (expr) | (term) - (expr) | (term)

(term) ::= (term) = (factor) | (term) / (factor) | (factor)
(factor) ::= + (factor) | - (factor) | ((expr)) | (int) | (int) . (int)
(int) ::= (digit) (int) | (digit)

(digit) =0l 11213 14l51617]81]9

void parse_expr() {
parse_term();

if (lookahead() == '+') { consume(); parse_expr(); }
if (lookahead() == '-') { consume(); parse_expr(); }
}
void parse_term() { ... }
void parse_factor() { ... }
void parse_int() { ... }
void parse_digit() { ... }

So let me tell you a bit about how to
mind such grammars. The idea is to
take a program that parses such
inputs and extract the input grammar
from it.

Rules and Locations

(expr) 1= (term) + (expr) | (term) - <(expr) | (term)

void parse_expr() {
parse_term();
if (lookahead() == '+') { consume(); parse_expr(); }
if (lookahead() == '-') { consume(); parse_expr();

}

The interesting thing is that there is a
correspondence between individual
rules in the input grammar and
locations in the parsing code.

Consumption

The character 15 last

(consumed) in ¢his »

void parse_expr() {
parse_term();

The concept of consumption
establishes this correspondence. A
character is consumed in a method
m if m is the last to access it.

if (lookahead() == { consume(); parse_expr(); }
if (lookahead() == ™=) { consume(); parse_expr(); }
}
Consumption

For each input character, we dynamically track where it is consumed

1+ (8-5)

rrrrrrrrr

Consumption

parse_term()

Lo U8 s

parse_digit()

parse_factor()

parse_digit() parse_expr()

Rahul Gopinth, B th,anct Anroas ot Mining Inpot Grammarsfrom Dynamic Control low, ESECIFSE 2020

)

parse_digit()

During program execution we can
track where characters are consumed
using dynamic tainting.

parse_term()

Consumption

parse_factor()

parse_expr()

parse_digit() parse_digit()
/

1 = (8 -

:::::

parse_digit()
\

5

This gives us a tree like structure.

parse_term()

Parse Tree

parse_factor()

parse_expr()

parse_digit() parse_digit()
/

parse_digit()
\

5

Which we can augment with caller-
callee relations.

parse_term()

Parse Tree

parse_factor()

parse_expr()

parse_expr()
7

parse_term() parse_term() parse_term()
\

parse_factor() parse_factor()
> 7
parse_int() parse_int()
iz s

parse_digit() parse_digit()
/

1 = (8 -

rrrrrrrrr

parse_factor()
\
parse_int()

parse_digit()
\

5

Even for those functions which do not
consume anything.

(term)

If we take the function names and

Parse Tree e only use the nouns, we can use those
o nouns as non-terminal symbols.
(expr)
(term) (Ler/m> (tel*m)
(Facto/r> (facti)r) (facu\)r)
(int) (int) tint)
(digit) (digit) (digit)
/ \
1 o+ (8 5
(rerm) From these parse trees, we can now
Mining a Grammar (factor)

{expr)

mine a grammar.

(e{xpr)
(term) (term) (tefm)
(facto/r> (fact/or) (factgr>
<int/> </'1nt/) (in\t>
(digi/t> (digit) (digit)
/ \
1 * (8 5
(term) A term obviously can consist of
Mining a Grammar B another term, a multiplication symbol,
and a factor.
(term)
*
So we add this as a rule to our
Mining a Grammar grammar.
(term) ::= ‘<term> * (factor)
(term) (term) (tefm)
(facto/r) (fa[t/or) (factor)

rrrrrrrrr

Mining a Grammar (factor)
(term) ::= (term) =* (factor)
| (factor)
1= (expr)

Rahul Gopinth, B th,anct Anroas ot Mining Inpot Grammarsfrom Dynamic Control low, ESECIFSE 2020

And likewise for other symbols.

Mining a Grammar

(term) ::= (term) =* (factor)
| (factor)
(factor) ::= ((expr))
|
(factor) (factor) (factgr>
(int) (int) (int)

:::::

Mining a Grammar

(start) ::= (expr)
(expr) (term) - (expr) | (term)
(term) (term) * (factor) | (factor)

(factor) ::= ((expr)) | (int)
(int) (digit)
(digit) 11518

From this single input, we already get
the basics of a grammar.

Completing the Grammar

(start) ::= (expr)
(expr) (term) - (expr) | (term)
(term) (term) =* (factor) | (factor)

(factor) ::= ((expr)) | (int)
(int) (digit)
(digit) ::=1]5]8

Parse tree

rrrrrrrrr

And if we add more inputs, ...

... the grammar reflects the structure

Completing the Grammar of these additional inputs.

(start) ::= (expr)

(expr) ::= (term) + <(expr) | (term) - (expr) | (term)
(term) ::= (term) = (factor) | (factor)

(factor) ::= ((expr)) | (int)

(int) si= (digit)

(digit) ::= 0 1121518

Parse tree

Rahul Gopinth, B th,anct Anroas ot Mining Inpot Grammarsfrom Dynamic Control low, ESECIFSE 2020

Completing the Grammar

(start) ::= (expr)

(expr) ::= (term) + (expr) | (term) - (expr) | (term)
(term) ::= (term) =+ (factor) | (factor)

(factor) ::= ((expr)) | (int)

(int) si= (digit)

(digit) =0 11215138

Parse tree

:::::

We now have successfully mined our

Completing the Grammar example grammar.

(start) 1= (expr)

(expr) ::= (term) + (expr) | (term) - (expr) | (term)

(term) ::= (term) = (factor) | (term) / (factor) | (factor)
(factor) ::= + (factor) | - (factor) | ((expr)) | (int) | (int) . (int)
(int) c:= (digit) (int) | (digit)

(digit) =0l 112131415161 71819

Parse tree

0+ 2
+3 / -46.79

aaaaaaaaaaaaaaaaaaaaa esecrsE 20,

Our Mimid grammar miner takes a
program and its inputs and extracts a
Fussers grammar out of it. This grammar can

directly be used by fuzzers, parsers,

m Input grammar Humans and h umans

Parsers

Mimid: A Grammar Miner

Inputs

*

(start) ::= (json_raw)

(json_raw) ::= " (json_string’) | [(json_list’) | { (json_dict")
| (json_number”) | true | false | null

(json_string) ::= (space) | ' | # | $ 1% 161"

[I I I I A B

l<t=1) lz2lallCr1r~1_1,1"1

I {1113} ~1/[AZa-z0-9]/ | \ (decode_escape
(decode_escape) ::= " | /| b |l flnlrl|t

)
(json_tist’) ::=] * Humans

| (json_raw) (, (json_raw))-]

I (, (3son_raw))+ (, (json_raw))]
(json_dict’) ::= }

| (" (json_string’) : (json_raw) ,)*

| " (json_string’) : (json_raw) }

(json_string’) ::= (json_string)*"

(json_number’) ::= (json_number)+ | (json_number)+e (json_number)+

The extracted grammars are well
structured and human readable as
you can see in this grammar extracted
from a JSON parser.

(json_number) ::= +« | - | . | /[0-91/ | E | e
Humans can edit these grammars.
(start) ::= (json_raw)
(json_raw) ::= " (json_string’) | [(json_list’) | { (json_dict”)
| (json_number’) | true | false | null
(json_string) ::= (space) | ' | # | $ 1% & |"
[I P | B
l<l=1) 1z20lallr10r~1_1,1"1
{111 3}1~1/[AZa-z6-9]1/ | \ (decode_escape)
(decode_escape) ::= " | /I bl flnlrlt

(json_list’) ::=] * Humans

| (json_raw) (, (json_raw))]

| (, (json_raw))+ (, (json_raw))*]
(json_dict’) ::=}

I (" {(json_string’) : (json_raw) ,)*

| " (json_string’) : (json_raw) }

Fuzzer *

(json_string’) ::= (json_string)*"
(json_number’) ::= (json_number)+ | {(json_number)+e {json_number)+
(json_number) ::= + | - | . | /[6-9]/ | E | e
For instance, by assigning
(start) ::= (json_raw) apag s . . .
(son_raw) t:= * (Gson_string’) | 10% [(Gson_list') | 50% { (Gson_dict) probabilities to individual productions.
| (json_number’) | true | false | null
(json_string) ::= (space) | ' | # | $ 1% & "
I I I R I A I
l<t=1) lz2zlalltrir~1r_1,1"1
I {111} 1 ~1/[AZa-20-9]/ | \ (decode_escape)
(decode_escape) ::= " | / | b | flnlr|t

(json_list’) ::=] * Humans

| (json_raw) (, (json_raw))*]

I (, (json_raw))+ (, {(json_raw))*]
(json_dict’) ::=}

| (" (json_string’) : (json_raw) ,)*

| " (json_string’) : (json_raw) }

Fuzzer *

(json_string’) ::= (json_string)* "
(json_number’) ::= (json_number)+ | (json_number)+e (json_number)+
(json_number) ::= +« | - | . | /[0-91/ | E | e
Or by inserting magic strings that
(start) ::= (json_raw) .
(Gson_xaw) :1= * (3son_string’) | [(son_tist") | { (Gson_dict’) program analysis would have a hard
| (json_number’) | true | false | null
(json_string) ::= (space) | ! | # | $ 1% | & " tlme flndlng Out.
[I I EEI I I I
l<l=1) l2lallr2r~1_ 1,11
{111}~ 1 /[A-Za-20-91/ | \ (decode_escape)
(decode_escape) ::= " | /I bl flnlrlt

(json_list’) ::= 1 * Humans

| {json_raw) (, (json_raw))*]

| (, (json_raw))+ (, (json_raw))*]
(json_dict’) ::= }

| (" (json_string’) : (json_raw) ,)*

| " (json_string’) : (json_raw) }

(json_string’) ::= (json_string)*" | '; DROP TABLE students"

(json_number’) ::= (json_number)+ | (json_number)+e (json_number)+
(json_number) ::= + | - | . | /[0-9]1/ | E | e

“": "'; DROP TABLE STUDENTS" , "/h?0 ": [], "": "" , "x": false ,
" null }

.gqF" , "": "'; DROP TABLE STUDENTS", "": 47 }
"7vs {oty"s), "t: false, "X": N7[:t, "": [true 1, "": [1, "": {

:onull }
c{ "": true }, "t": 90, "g": ["'; DROP TABLE

false], "=R5": [1, : "'; DROP TABLE STUDENTS",
"E": null, "": [70.3076998940e6], "Ju": true } }
" otrue, "%7y", "1": false, "": true, "": { "*: [1, "":
~096860E+0, : BE-5
Fuzzer "'ia": [true, "'; DROP TABLE STUDENTS", null, [false, { } 1,
": 9.0, "": null, "": true, "7": 208.00E4, "": true, "":

J": [false, false] }
; DROP TABLE STUDENTS" }
'; DROP TABLE STUDENTS" }
, "": [{ "p[f": false, "": "'; DROP TABLE STUDENTS",
, :otr "8D": -0, "@R": true } 1}
DROP TABLE STUDENTS" }
; DROP TABLE STUDENTS", "zJzjT": 6.59 }
: false }
": [false, 304e+008520, null, false, "'; DROP TABLE STUDENTS",
", [false 111}

This change to the grammar injects
SQL statements everywhere. Do not
do this at home, folks — thank you.

Mimid: Evaluation

oS S S

* Mined grammars can generate ~98% of the actual language

* Mined grammars can parse ~92% of the actual language

* Works on modern combinatory parsers, too

:::::

The grammars extracted by Mimid are
accurate as producers as well as as
parsers.

Learning the Language

 Learn readable language specs (grammars) automatically
* Mined input grammars are accurate: ~98% generating, ~92% parsing

 Learn from given program only; no input samples required

So this was about learning (input)
languages.

Mining Grammars without Samples

Fuzzers
m Input grammar Humans

Inputs
Parsers

Parser-Directed
Test Generator

Our grammar miner needs inputs in
the first place. But we also have
specific test generators that
systematically cover all alternatives in
a parser. So technically, all you need
is the program to test.

Learning the Language

* Learn readable language specs (grammars) automatically
* Mined input grammars are accurate: ~98% generating, ~92% parsing

« Learn from given program only; no input samples required

Learning the Language of Failure

And now for the main point.

Circumstances of Failure

P

For which other inputs does this hold?

We have seen how single inputs
cause failures. But are these the only
inputs?

From Inputs to Languages

Input grammar

We want to know the set of inputs
that causes the failure — in other
words, the language. To this end, we
parse the input into a tree.

From Inputs to Languages

Does the failure occur for other (int) values?

To find out whether the failure occurs
for other integer values too, ...

From Inputs to Languages

Does the failure occur for other (int) values?

... we replace parts of the parse tree
(8) by newly generated alternatives
(27).

Patterns of Failure

L

Ranul Gopintn, Alexandor Kampmann, Nikols Hovikon, Ezeki Sxemekun,and Andreas Zeir

and find that this one fails as well.

Patterns of Failure

Lr (o= 9)

1% (8-5)X
1% (27 - 5) X
1% (3 -5)
1 * (205)

Actually, the program fails for any
integer in this position. So we can
come up with an abstract pattern that
represents the set of failing inputs.

Patterns of Failure

“The error occurs whenever * is used in conjunction with —*

(expr) = ((expr) - (expr))

1 x ((++1) - Q7)) X
(2 -3) » (8.2 - -387) X | oet cases
(3 + 4.2) * (8 - +4) X | for the failure
(-3.5) » (23 - 05) X

Ranul Gopinaln, Alexander Kampmann, Niclas Havhen, Ezekil Sremekun,and Andreas Zeer

By repeating this, we can come up
with a general pattern of which all
instantiations cause the failure. These
instantiations also serve as test cases
for validating a fix.

DDSet

Program

Concrete Inputx

Pattern

Grammar

Our tool DDSet takes a program, a
failing input, and a grammar, and
produces such a pattern of failure.

DDSet: Evaluation

T ® O

<
Clojure GNU find GNU grep

Closure Rhino

« For 19 of 22 bugs, concrete inputs could be abstracted into patterns
* 91.8% of inputs from patterns were semantically valid; 98.2% reproduced the failure

« Patterns serve as diagnostics as well as producers

Ranul Gopintn, Alexandor Kampmann, Nikols Hovikon, Ezeki Sxemekun,and Andreas Zeir

In our evaluation, this works really
well.

Input Features

(expr) *= ((expr) - (expr))

« Failure could also occur for other inputs — how about / or + ?

« Failure could depend on non-structural features like length, value, etc.

But we can go even further. What
other features in the input cause a
failure?

Input Features

3 (term) * (factor)
3 (term) - (expr)

3 ((expr))

31 35 38
len((int)) =
max((int)) =
min({(int)) =
len((start))

Prees

Which of these features correlate with failure?

[N

SECSE 2020,

We introduce a number of input
features, including existence, length,
and maximum and minimum values of
specific input elements.

Learning Failure Models

/1x
Features

Inputs Features Model V4 | X

These features together with a pass
and fail label then go into a machine
learner which produces a predictive
model.

Learning Failure Models

Inputs Features Model V4 | X

Actually, the produced model serves
as a model of the program as it
comes to failures or non-failures.

Training a Classifier

Labeled Inputs Features
1% (8-5)x 31 35 38
len((int)) = 1

27 +34 32 33 37
max((int)) = 27

Decision Tree Learner

-1 * 23+ 4y T1 32 T3 T4
min((int)) = -1

In our experiments, we use decision
tree learners as their results are easy
to understand.

Training a Classifier

Labeled Inputs
1+ (8-5)X

27 + 34

-1 %23+ 4y

Features
31 35 38
len((int)) =1

32 33 37
max((int)) = 27

31 32 33 34
min({(int)) = -1

387

\ yes

/
no /
/ N\
/

SECSE 2020,

Here is a decision tree that classifies
the three inputs on the left. We see
that the existence of the digit 8 serves
as classifying feature. The model is
consistent with all the observations
made so far.

Training a Classifier

Labeled Inputs
1% (8-5)X

27 + 34

-1 % 23 + 4 f

Features
31 35 38
len((int)) =1

32 33 37
max((int)) = 27

31 32 33 34
min((int)) = -1

len({(int)) = 17

N\ ves

,// X

The learner also could come up with
another model over the presence or
non-presence of multi digit integers.
Is any of these correct?

Training a Classifier

Labeled Inputs
1% (8-5)X

27 + 34

-1 %23+ 4y

Features
31 35 38
len((int)) =1

32 33 37
max((int)) = 27

31 32 33 34
min((int)) = -1

Failures are scarce —
so how can we get
sufficiently many inputs?

zzzzzz

What we need is more inputs and
more observations to come up with a
more precise model.

Refining Models

Features Learner

X

New inputs
to refine the model

Inputs Features Model

X

We create new inputs right from the
model learned so far.

Specifically, for every path in the tree,

Training a Decision Tree we generate more inputs.
Labeled Inputs Features
1*(8-5)X 31 35 38
len((int)) =1 E! 8\?
27+34 32 33 37 / N

max((int)) = 27

123+ 4y 31 32 33 34 J x

min({(int)) = -1

— Generate more inputs - with and without deciding feature!

Noxander Kampmane, Nikolas Havrkov, Ezokit Soromekan, o SECSE 2020,

Training a Decision Tree

Labeled Inputs
1% (8-5)X

27 + 34 \

ey v X

o - So, here are more inputs with and
Training a Decision Tree without the digit 8. For every input, we

T test whether the failure occurs.

27+ 34 / \
-1 %23 + 4y no/ e

1% (27 - 5) X
New inputs
without 3 8 , x

41 + -3 ¢
2+ /)4

New inputs
with 3 8

1% (27 + 8) X
8+ -274

8«2 +2y

o o For these inputs, the old hypothesis
Training a Decision Tree no longer holds. The decision tree

Eatielfz In.pust?x now comes up with a more detailed

27 + 34 7\ model.
-1 %23 + b no// N\ es

1% (27 - 5) X \
4 s -3y New inputs 3 (</e><p\r))?
without 3 8 o/ N e
/ \\

2+ /)4
New inputs / x
with3 8

8% (27 + 8) X
8+ -274
8x2+24

Decision Tree 3 (expr) * ((expr) - (expr))?

s ¥ x
I (expr) * ((expr/> + (expr)) ?

no_- ~_ses

3 ((expr) - (exprsr) / (expr)? x
e

SECSE 2020,

If we repeat this a number of times,
we end up with this decision tree
which now accurately characterizes
the circumstances of failure.

The Failure Circumstances

“The program fails when the distributive law can be applied”

(expr) * ((expr) - (expr))
(expr) * ((expr) + (expr))
((expr) - (expr)) / {expr)
((expr) + (expr)) / {expr)

Can be used as explanation, as producer, as predictor

And this now tells us under which
circumstance the failure occurs -
namely, whenever the distributive law
can be applied.

Alhazen

Inputs \ 5 bgram ‘/l x

Learner

Model X

New inputs
to refine the model

Inputs

zzzzzz

We named our approach Alhazen,
after Hasan Ibn al-Haytham (Latinized
as Alhazen /ael'haezan/; full name Abu
‘All al-Hasan ibn al-Hasan ibn al-
Haytham g sl o Guaadl o ole 4
agll; €.965 - ¢.1040) — an Arab

mathematician, astronomer, and
physicist of the Islamic Golden Age.

Alhazen

Observations

Hypotheses

Alhazen was an early proponent of the
concept that a hypothesis must be
supported by experiments based on
confirmable procedures or
mathematical evidence—an early
pioneer in the scientific method five
centuries before Renaissance
scientists.

Alhazen

Inputs
X

Inputs/

Grammar

SECSE 2020,

Alhazen takes a program, failing and
passing inputs, and a grammar.

Alhazen

Inputs
Observations
Experiments q Model

Hypotheses

By abstracting over observations, and
gradually refining hypothesis through
experiments, Alhazen produces a
predictive (and generative) model on
whether failures occur or not.

Alhazen

Program

Fuszer Model

Grammar Miner

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Since the passing and failing inputs
can come from a fuzzer, and since the
grammar can come from a miner, ...

Alhazen

Model

Nexander Kamprma,

... Alhazen actually only need the
program to be debugged to produce
a model.

Alhazen: Evaluation

e B

'
Closure Rhino Genson Calculator GNU find GNU grep

* As a predictor, Alhazen models classify 92% of all inputs correctly
* As a producer, ~68.5% of produced inputs correctly cause failures

» On average, decision trees refer to less than 5% of all input elements

SECSE 2020,

Alhazen works great as a predictor
and as a producer. Also, the decision
trees refer to a small subset of the
input grammar, allowing developers to
focus on these.

Grep Crash

“grep crashes when --fixed-strings is used together with an empty search string“

3 (fixed-strings) ?
/ N
yes / \\na
/ \\

len(<searc;1)) = 0? J

\
yes N\ no
\

X v

Here is an example. Alhazen correctly
determines the circumstances of a
grep crash.

Nethack Crash

“NetHack crashes when a line in the config file has more than 619 characters”

len((line)) = 6197
e \\ o
yeS// \

%

S X

Since my time as a PhD student, |
always wanted to have a slide with
NetHack on it. This is how Alhazen
explains the circumstances of a
NetHack crash.

Learning the Language of Failure

 Learned behavior models explain, produce, predict (failing) behavior
* Models refer to terms from problem domain rather than internals

» Generalizes to arbitrary predicates on program behavior

So this is learning the language of
failure — the set of inputs that causes
a program to fail.

Beyond Failures

Inputs ‘ Program 4 | X
| —
Features @
[_
New inputs
to refine the model
Inputs Features Model /l X

One exciting thing about our
approach is that it can generalize in
many ways. For instance, one can use
other learners besides decision tree
learners.

Learning the Language of Failure

But one can use other predicates too.

Learning the Language of Acceptance

We can learn the set of inputs
accepted by a program.

Learning the Language of Coverage

Or the inputs that cover a particular
location.

Learning the Language of Data Leaks

The set of inputs that cause a
particular unwanted behavior.

Learning the Language of Exploits

Possibly even the exact language
under which an exploit takes place.

Learning the Language of Security

Or, the complement: the language for
which nothing bad happens. (There is
a lots of future work in that one.)

Perspectives

So, where are we going from here?

y / / /

y >

Universal
Languages
Context-Sensitive
Languages
Functions
Context-Free Stateful Systems
Lan
anguages Batch Systems

Domains

Testing Debugging Prevention

Applications

There are many ways languages,

applications, and domains, can be
combined.

A Failure

1 * (8 - 5) Interpreter

A domain | have not talked about yet
is actual code.

A Function

static rtx
apply_distributive_law (rtx x)
{

enum rtx_code code = GET_CODE (x);
enun rtx_code inner_code;

rtx lhs, rhs, other;

rtx tem;

/+ Distributivity is not true for floating point
as it can change the value. So we don't do it unless
funsafe-math-optimizations, +/

if (FLOAT_MODE_P (GET_MODE (x))

86 ! flag_unsafe_math_optimizations)
1 % (8 _ 5) return x;

/+ The outer operation can only be
one of the following: +/
if (code != IOR 66 code != AND 66 code != XOR
66 code != PLUS 66 code != MINUS)
return x;

lhs = XEXP (x, 0);
rhs = XEXP (x, 1);

/% 92 more lines ... %/

Because somewhere in your program
is a piece of code that is faulty and
fails. Here we have a function from
GCC that once was faulty.

(term)

A Function
Input

static rtx
apply_distributive_law (rtx x)
{

(factor)

enum rtx_code code = GET_CODE (x);

enun rtx_code inner_code;

rtx lhs, rhs, other;

rtx tem;

(

(expr) /+ Distributivity is not true for floating point
as it can change the value. So we don't do it unless
-funsafe-math-optimizations. /

if (FLOAT_MODE_P (GET_MODE (x))

86 ! flag_unsafe_math_optimizations)

return x;

(expr)

{term) (term) (term) /+ The outer operation can only be

one of the following: +/

(factor, (factor (factor, if (code != IOR &6 code != AND &6 code != XOR

! !) 86 code != PLUS 66 code != MINUS)

return x;

(int) (int) (int)

lhs = XEXP (x, 8);
(digit) (digit) (digit)
/

rhs = XEXP (x, 1);
/ 92 more lines ... x/x

1 ~(8 - 5

In our case, the input to this function
actually is a parse tree.

A Function /"
Input

The question is: Can we test
apply_distributive_law() by supplying
it with valid values for x? If you
choose a function-level test generator,
you will feed plenty of invalid parse
trees into this function. This will not
test well.

A Function Input

1*(8_5)

At the system level, however, this is
easy, as we can feed valid system
inputs into our interpreter/compiler.

A Function

1*(8_5)

static rtx
apply_distributive_law (rtx x)

-

We can do so for one input...

A Function

1+(8
1+ (27
8 » (27
(-2 +9)
(1-2)

5)
5)
8)
46
-3

Interpreter

static rtx
apply_distributive_law (rtx x)

-

... and for as many as we like, each
one producing a valid value for x.

A Function

static rtx
apply_distributive_la @
{

What is ¢he language of” x7

But if we want to test the function in
isolation, or reason about how it
works, we need to know the set of
valid values for x. This is a type and a
language. How can we learn this?
This is an open question.

Perspectives ""'"

Universal
Languages
Context-Sensitive
Languages
Context-Free Stateful Systems
L.
anguages Batch Systems

Testing Debugging Prevention

Applications

Teamwork

Andreas Zeller and Dorothea Litkehaus. DDD—a free graphical front-end for UNIX debuggers. SIGPLAN Notices 1996

i Jler and Ralf Hildebrandt. Simplif i ing Input. TSE 2002,

Thomas Zimmermann, Peter Weissgerber, Stephan Dieh, and Andreas Zeller. Mining Version Histories to Guide Software Changes. TSE 2005.

The d Anch Jler. Predicting ©Cs 2007,
Ghistian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with Code Fragments. USENIX 2012

Open science

Nikolas Havrikov and Andreas Zeller. Systematically Covering Input Structure. ASE 2019.

Open source

Bjorn Mathis, Rahul Gopinath, Michaél Mera, pmann, and Andreas Zeller Fuzzing. PLDI 2019.

Rahul Gopinath, Bjor Mathis, and Ands fler. Mining Flow. ESECIFSE 2020,
Bjom Mathis, Rahul Gopinath, and Andreas Zeller. Learning Input Tokens for Effective Fuzzing. ISSTA 2020,
Rahul Gopinath, Alexander Kampmann, Nikolas Havrikov, Ezekiel Soremekun, and Andreas Zeller. Abstracting Failure-Inducing Inputs. ISSTA 2020

Alexander Kampmann, Ezekiel kun, and And ller. When does my Program do this? Learning Circumstances of Software Behavior. ESEC/FSE 2020.

Here is a list of all the papers that
went into this talk.

Teamwork

Thomas Zimmermann Dorothea Litkehaus ~ Peter Weissgerber ~ Stephan Diehl Stephan Neuhaus Christian Holler ~ Ralf Hildebrandt
Nikolas Havrikov Kim Herzig Rahul Gopinath Bjérn Mathis Michaél Mera Alexander Kampmann Ezekiel Soremekun
Nataniel Pereira Borges Junior Rafael Dutra Konstantin Kuznetsov Jenny Rau Sascha Just Matthias Héschele Andreas Rau
Clemens Hammacher Kevin Streit Konrad Jamrozik Alessio Gambi Vitalii Avdiienko Maria Gémez Lacruz ~ Alessandra Gorla
Sudipta Chattopadhyay ~Andrey Tarasevich Juan Pablo Galeotti ~ Gordon Fraser llaria Tavecchia Florian Gross EvaMay Marcel Bohme
Valentin Dallmeier ~ Bernd Pohl Michael Mirold Christian Lindig Silvia Breu® Stephan Neuhaus ~ Martin Burger ~ Frank Padberg

Rahul Premraj ~ YanaMileva Matthias Schur David Schuler ~ Jeremias RoBler Andrzej Wasylkowski Irina Brudaru Holger Cleve

And these are my all of my students
and post-docs over the years. My
work became possible only through
them. Thank you!

Mining Grammars
Fuzzers

=) Humans

Parsers.

Learning Software Behavior

“grep crashes when ~fixed-strings is used together with an empty search string"

3 (fixed-strings) ?

st -
Applications
¥ @AndreasZeller

Patterns of Failure

“The error occurs whenever is used in conjunction with ~*

(expr) * ((expr) - (expr))

1+ ((+01) - Q7)) X

(2 -3) » (8.2 - -387) X
(3+4.2) % (8- +4) X
(-3.5) » (23 - 05) X

eeeeeee
for the failure

That's all! If you like this work, and
want to know more, follow me on
Twitter or visit my homepage at
https://andreas-zeller.info/. See you!

